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Progress Report Summary 

Project Year 1 (2005 –2006) 
 
A  INTRODUCTION 
For several decades, the definitive treatment for low and medium risk prostate cancer was radical prostatectomy 
or external beam radiation therapy, but low dose rate permanent seed brachytherapy (shortly brachytherapy) 
today can achieve equivalent outcomes. Brachytherapy, if accurately executed, can achieve a sharp demarcation 
between the treated volume and healthy structures, and thereby achieve superior tumor control with reduced 
morbidity. In contemporary practice, however, faulty needle and source placement often cause insufficient dose 
to the cancer and/or inadvertent radiation of the rectum, urethra, and bladder. Another fallacy of the current 
implant techniques is that reliable and accurate exit dosimetry is not possible. The contribution of the proposed 
research will be making C-arm fluoroscopy available for safe, simple, and robust intra-operative localization of 
brachytherapy sources relative to the prostate. We will develop a method for the registration of ultrasound to 
fluoroscopy (RUF), to fuse TRUS (Trans-rectal ultrasound can view the prostate but not the seeds) with C-arm 
fluoroscopy (which is capable of viewing the seeds but not the prostate). This feature will allow for dosimetric 
optimization of the prostate brachytherapy implants and exit dosimetry before the patient is released from the 
operating room; thereby enabling significant improvement on current clinical practice. A further promise is that 
fluoroscopy-based exit dosimetry may obviate CT-based post-implant dosimetry. 
 

 

 
 Figure 1: System concept for TRUS and C-arm fusion 

B BODY 
B.1 Brief System Concept 
The system concept for registration of ultrasound to 
fluoroscopy (RUF) is summarized in Figure 1. The 
fluoroscope is calibrated and corrected from image 
distortion pre-operatively. The implant procedure starts as 
usual: TRUS is used to guide each individual needle and a 
C-arm placed over the patient’s abdomen. The C-arm is 
tracked with an X-ray fiducial system called FTRAC that is 
composed of optimally selected polynomial space curves. 
The fiducials are mounted rigidly to the TRUS frame in the 
field of view in a known calibrated pose relative to the TRUS, thereby providing spatial registration between the 
C-arm and TRUS. Upon implanting a batch of needles (typically a row of needles), we collect a set of TRUS 
and C-arm images. The locations of the implanted seeds are recovered from the C-arm fluoroscopy images with 
the use of a network flow based method called MARSHAL that provides seed segmentation, matching, and 
reconstruction method. Then the cloud of seeds is superimposed over the spatially co-registered TRUS images. 
The 3D dose distribution is rapidly calculated from the union of the already and yet to be implanted seeds. The 
dose distribution is analyzed with tools currently available in the brachytherapy system used. Then the implant 
plan can be optimized to account for discrepancies from the ideal dose distribution. The procedure continues 
with the next batch of needles in the cycle described above. After the last needle, a complete dosimetry check is 
performed, which provides a final opportunity to patch up any cold spots with additional seeds.  
 
B.2 Proposed Statement of Work 

We proposed to develop a method for the registration of ultrasound to fluoroscopy (RUF) to allow for intra-
operative dosimetry in prostate brachytherapy and prototype mathematical algorithms (Aim-1), integrate them 
with an existing FDA approved prostate brachytherapy system that provides dosimetry analysis (Aim-2), and 
evaluate the system experimentally on phantoms and pre-recorded patient data (Aim-3).  Algorithmic design 
(Aim-1) and experimental evaluation (Aim-3), will progress hand in hand. System integration (Aim-2) will be 
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performed immediately when a workable subset of RUF package becomes available from Aim-1 and again 
revisited towards at the end of the project. Therefore, the timeline will be somewhat non-linear. The detailed 
statement of work was as follows: 
 
Aim-1: Registration of Ultrasound to Fluoroscopy (RUF): Develop a methods for reconstruction of seed 

implants from X-ray fluoroscopy and spatially registering  them to the prostate anatomy identified in 
TRUS 

Aim-2: System Integration: Integrate the above methods in a software package and link it with the FDA-
approved CMS Interplant® prostate brachytherapy system to enable dosimetry calculation 

Aim-3: Experimental Validation: Evaluate the performance of the RUF system on phantoms and pre-
recorded patient data. (Neither of which require an IRB approval) 

 
B.3 Progress Report for First Year 
In Aim1: the three main aspects were (a) Registration of X-ray to ultrasound; (b) C-arm tracking; and (c) Seed 
reconstruction.  
(a) The FTRAC fiducial [12] was rigidly 
attached to the implant template with a 
precision-machined mechanical connector 
in a known position, while the template is 
already registered to TRUS. The spatial 
relationship between the FTRAC and 
TRUS is explained in Figure 2. Let PF be a 
point reconstructed in FTRAC space, PU 
be the same point in ultrasound space, FFT 
be the transformation between FTRAC 
and template, and FTU be the 
transformation between template and 
ultrasound. Then the relationship between PU and PF can be expressed as PU= FTU FFT PF. A prototype was 
manufactured and tested on real patients for dimension verification and workspace feasibility, as shown in 
Figure 3. Using this data, a new design was created and fabricated, as shown in the middle two images of Figure 
3. A calibrated Optotrak (an infrared optical tracker) pointer was used to digitize various lines, which were then 
used to register the FTRAC fiducial to the insertion template. The accuracy of this registration process was 0.22 

mm. Moreover, the attachment was tested for rigidity with respect to sterilization. The pre and post-sterilization 
registration produced the same values (within the accuracies of measurement), indicating that the fixture is 
robust to the sterilization process. However, two problems were noticed: (i) drilling of the needle insertion holes 
had an error of 1º, leading to a 2 mm offset for the seed deposition; and (ii) the weight of the design was not 

   
Figure 2: FTRAC fiducial mounted on the template over the pubic area in 

design (left). Frame transformations for the registration between the FTRAC 
and ultrasound spaces (right). 

             
Figure 3: FTRAC fiducial mounted on the template over the pubic area of a real patient (left). A second generation CAD model 

(middle left) and its respective prototype (middle right). The third generation CAD model (right). 
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fully desirable. Hence a new attachment is being designed, which is much lighter and more accurate, as 
illustrated in Figure 3. The main improvements in the design of the new attachment are: (i) the capability to 
operate at multiple heights, providing the capability to accommodate obese patients; (ii) superior placement 
with respect to the patient, providing better workspace optimization; (iii) lighter weight; and (iv) more accurate 
holes. The final attachment is expected to be ready in the coming few weeks, when appropriate validation 
experiments would be performed. 

Figure 4: X-ray images with the FTRAC fiducial mounted over the pubic area. It can be 
noted that the segmentation algorithm is robust to significant variations in the images. 

(b) The primary objective here 
was the improvement in the 
robustness with which the C-
arm can be tracked. The earlier 
hypothesis was that the 
accuracy bottle neck for C-arm 
tracking would be the ability to 
completely segment the 
fiducial from the clinical 
images. We had proposed a 
bootstrapping algorithm to tackle this problem, where the segmentation and pose estimation processes were 
alternated. However, we developed a segmentation algorithm that was sufficiently robust enough to accurately 
segment the fiducial in all the clinical images, as shown in Figure 4 [7]. In addition to the robust segmentation, 
we have further made three primary improvements to improve the accuracy of C-arm tracking. (i) We have 
created five new designs for the fiducial with diameters varying from 5 mm – 25 mm [5]. These designs 
improve the segmentation accuracy not only by avoiding the intersection of the lines & ellipses in the image, 
but also by reducing the size of the fiducial (a smaller fiducial stays completely inside the workspace providing 
full feature imaging). The preliminary results indicate that the smaller fiducials offer robustness in 
segmentation, without any loss in the accuracy of C-arm tracking. (ii) We have proposed the use of the 
segmented seed locations in the X-ray images to refine the C-arm poses [4]. This information is readily 
available without altering the current pipeline [6]. Though the method was sufficiently robust to track the C-
arms without the use of the FTRAC fiducial, the presence of the fiducial made the full algorithm practically 
bullet-proof. (iii) Inspired by the previous result, we investigated the possibility of using just a single ellipse in 
addition to the segmented seed locations to automatically track a C-arm [3]. A single ellipse is otherwise not 
sufficient to track a C-arm, but in combination with the 
seed locations, can drive the problem home. Preliminary 
results indicate a tracking accuracy better than a degree. 
Further experiments are currently underway, the results of 
which would be published next year. 
 
(c)  As about 7% of the implanted seeds can be hidden in 
the X-ray images, hidden seeds have profound impact on 
the robustness of seed matching. Currently there is no 
feasible algorithm available that can solve this problem 
robustly, without any constraints on where the images were taken from. Hence the theoretical framework of the 
original algorithm [11]  was extended to solve the problem [8]. The min-cost flow formulation was extended for 
this purpose. Sets A, B, C have a node for each seed. A flow of ‘0’ means that the two seeds do not correspond, 
while a flow of ‘1’ means that they do. The links connecting S to A, (or B to C, C to A, A to T) have the 
capability to carry flow that could exceed 1 unit, ensuring that each seed in each image has to be matched, and it 
can possibly have hidden seeds at that location. The maximum flow allowed on these links yield the maximum 
number of seeds that can overlap. Now a min-cost flow equal to the number of seeds is pushed in the network, 
which achieves correct matching including hidden seeds.  In essence, our novel approach exploits that although 
the problem is NP-hard and the network is not able to constrain the hidden seeds in any one image, still hidden 

 Figure 5: The matching problem can be converted to the 
flow problem, the min-cost flow giving the best match. 
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seeds in other images are extremely well constrained. Thus the min-cost flow nearly solves the problem, except 
for a few cases which exhibit some ambiguity. These cases usually incarnate themselves as self-consistent 
complete subsets of 2-5 seeds. Each of these subsets can be independently solved using an extremely fast brute-
force type of algorithm. This approach can be extended to any number of images. Thus MARSHAL effectively 
recovers the hidden seeds and resolves the correspondence in polynomial time. Phantom experiments were 
conducted on a precisely fabricated acetol seed phantom, with the number of seeds ranging from 40 to 100 in 
increments of 15, while keeping the seed density at 1.56 seeds/cc. Four images gave a matching rate of ~100% 
and a worst case reconstruction error of 0.8 mm for the occasionally mismatched seeds. Thus Hidden-
MARSHAL with 4 images appears clinically viable. Furthermore, MARSHAL was also extended to utilize seed 
orientation [9]. The original MARSHAL used only the information about seed centers, disregarding the 
information about the orientations and length of seeds, which could have some dosimetric impact for certain 
seed/isotope types and can contribute to improving seed matching rate and 3D implant reconstruction accuracy. 
It can also become critical information when hidden and spuriously segmented seeds need to be matched, where 
reliable and generic methods are not yet available. Expecting orientation information to be useful in 
reconstructing large and dense implants, we have developed a method which incorporates seed orientation 
information into MARSHAL. Simulation experiments indicated that using seed orientation also improved the 
matching rate. Currently we are 
making further extensions to the 
matching algorithm by designing a 
tomosynthesis based algorithm that 
can reconstruct the seeds without 
explicitly segmenting them. This 
algorithm is currently still in 
development, though recent lab 
experiments have indicate that the 
algorithm can reconstruct seeds using 
6 images.  

Figure 6: Universal dewarping and calibration fixture. CAD model (left), actual
photograph (middle) and resulting pre-operative fluoro image (right).  

 
(d) In addition to the above aspects of Aim1, we have also made further progress in the issue of C-arm 
calibration.  Since the past submission, a new clinical-grade fully automated calibration toolkit was designed, 
built, and tested (Figure 6) [2]. The objective of “C-arm Calibration” is to discern intrinsic and extrinsic 
parameters (focal distance, etc) of the fluoroscope, achieving fully automated calibration within five minutes 
time, including setup and image acquisition. We developed a highly portable two-plane calibration phantom, the 
first plane of which is a distortion correction grid. The phantom easily fits on any C-arm with the use of a 
“portable flange” that allows the phantom to go on and off the C-arm within seconds. Residual errors for 
distortion correction showed an average value 0.26 pixels and a deviation of 0.08 pixels. Extrinsic calibration is 
also performed with the same phantom using the same image. A second plane on the phantom contains 
precision machined straight lines. Each line in space, along with its projection in the image, defines a unique 3D 
plane. Since the X-ray source has to pass through all these planes, the least square minimization intersection of 
these 10 planes provides an accurate estimate of the intrinsic C-arm parameters. Experiments using this auto-
calibration phantom exhibited accuracy within 10 mm for the focal length, which is significantly better than that 
required for accurate 3D reconstruction of the brachytherapy sources. The total running time for the toolkit, 
including image capture, automatic segmentation and calculation was consistently below 1 minute. 
Furthermore, in a recent paper [10], we have modeled the effects of mis-calibration on 3D reconstruction as an 
affine transformation, and we proved its validity experimentally. We have derived bounds on the amount of 
scaling, translation, and rotation error. For pose-dependent calibration, we proved that using the mean 
calibration minimizes the reconstruction variance. Phantom experiment with the FTRAC fiducials indicated that 
C-arm tracking is insensitive to mis-calibration. We also proved that mis-calibration up to 50 mm adds only 
negligible error in 3D reconstruction of small objects, beyond which the reconstructed object start drifting with 
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respect to the fiducials, while retaining relative pose. Thus we have theoretically proved that a significant family 
of applications involving the reconstruction of small objects, such as brachytherapy implants, can function 
without cumbersome super-accurate on-line calibration. A constant off-line calibration should suffice.  
 
In Aim2: we proposed to devise a procedural workflow to incorporate the RUF package with the Interplant 
system in a manner that does not impart significant changes on the usual flow of treatment. The proposed final 
clinical procedure is as outlined below. It can be observed that it does not cause any significant alteration to the 
current standard of care workflow and does not add in excess of 10 minutes to the current surgical time. 

1. Setup: 
a. Prepare patient 
b. Assemble Interplant® 
c. Position C-arm above the patient  
d. Attach FTRAC fiducial (NEW STEP) 

2. Insertion Planning 
a. Acquire TRUS volume of target anatomy 
b. Transfer TRUS to Interplant® 
c. Optimize insertion and dosimetry plans 

3. Needle Insertion and Seed Deployment 
a. Insert needle 
b. Confirm needle location 
c. Drop seeds 
(Repeat from step 3 for a batch of needles) 

4. Fluoroscopy 
a. Position C-arm 
b. Acquire and store image 
(Repeat from step 4 for each image) 

5. Registration of Ultrasound to Fluoroscopy (NEW STEP) 
a. Import fluoro images onto laptop 
b. Calibrate C-arm 
c. Recover C-arm poses 
d. Match & reconstruct seeds 
e. Transform seeds to template frame  
f. Export seeds 

6. Dosimetry & Optimization 
a. Import seed locations to Interplant® 
b. Analyze dosimetry 
c. EXIT if dose is optimal 
d. Otherwise optimize the remainder of the plan 
e. Repeat from 3a 

 
For maximum safety and traceability, the above workflow is kept identical to that of a standard implant 
procedure, except adding two steps: mounting the FTRAC fiducial and performing Registration of Ultrasound 
to Fluoroscopy (RUF). RUF will be implemented as stand-alone software running aside the Interplant on a 
shared workstation. The standard implant workflow will halt after Step 4 and RUF will run separately. RUF will 
export a list of seeds (stored in external data file) for Interplant. Our design guarantees that (1) Interplant will 
not need to be modified to accommodate for RUF and (2) RUF will not jeopardize operational safety in the 
current Interplant. Note that the corresponding basic import function in Interplant is currently available and it is 
used for importing seed locations from a CT-based post implant dosimetry package. The current software 
implements the following: First, we remove the already implanted seed from the latest implant plan. Next, we 
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add the seeds to the dose field that were reconstructed from fluoroscopy. The seeds imported from fluoro 
reconstruction are “permanent”, in the sense that they cannot be modified (because they were already 
implanted), contributing a permanent dose. Hence the total dose will be calculated from the union of imported 
and yet to be implanted seeds. 

The workflow within RUF, as also illustrated in Figure 7, has been implemented as follows: We will import 
the recorded C-arm images from the DICOM storage. If the particular C-arm does not have its own DICOM 
storage, we will provide one by grabbing the video frame from the C-arm and creating a DICOM image with 
correct header and time stamp. We will recover the pose of the C-arm images relative to the FTRAC fiducial. 
We will match and reconstruct the seed locations in FTRAC space. We will transform the seed locations from 
FTRAC space to Interplant template space by applying the a priori known rigid transformation matrix 
implemented by the precision-machined extender. We will then export the seed locations from RUF to 
Interplant. The one-way interface between RUF and Interplant will take place through an ASCII clear text data 
file containing a variable list of 3D points (xyz coordinates) representing 3D seed locations. The data file will 
be exported from RUF automatically and imported to Interplant by operator request. For maximum flexibility 
and rapid prototyping ability, we have implemented RUF in the MATLAB environment. This environment has 
been sufficiently fast, robust, and most of all, it has been providing fast turn-around in prototyping. While 
MATLAB is excellent for algorithmic work, it also has a rich image processing toolbox and handles DICOM 
images as well.  

 

   
 

Figure 7: GUI screen captures of the various phases of the algorithm, including GUI for the main program, calibration, 
image acquisition, distortion correction, seed & FTRAC segmentation, seed matching and validation.  

In Aim3: we proposed to evaluate the workspace constraints and the overall performance of the system. In order 
to minimize image acquisition time, while still maximizing reconstruction accuracy, the following set of 
optimal imaging poses have been empirically 
evaluated: Image-#0: 5º left lateral; Image-#1: 
maximum left lateral (15º);  Image-#2: maximum right 
lateral (5º) without hitting the FTRAC; Image-#3: 
maximum forward tilt (10º) with 5º left lateral; Image-
#4: maximum backward tilt (10º) with 5º left lateral. 
Though detailed experimental evaluations have been 
allocated in year 2, we have in conjunction with our 
clinical partners, conducted one dummy-surgical trial 
on a custom made prostate phantom (Figure 8). 45 
dummy Palladium seeds were inserted using the 

     
Figure 8: The experimental setup for the procedure (left). The
C-arm and Ultrasound probe are also visible. The shift between
the reconstructed (red) and true seed locations (black). 
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Interplant system and the full protocol carried out. To establish ground truth, the phantom was rigidly strapped 
to the FTRAC fiducial and a post-operative CT (0.5mm pixel size, 1 mm slices) was conducted. The seeds 
reconstructed from our procedure were compared to those from CT. The experiment provided an average 
accuracy of 1.6 mm, clinically sufficient for the procedure. It was also noticed that the reconstruction accuracy 
of the implant was 0. 22 mm, though the whole implant was shifted by 1.4 mm, as illustrated in the Figure 8. 
The possible reasons for this are currently under study, since it can potentially improve the performance. 
 
C KEY RESEARCH ACCOMPLISHMENTS 

1. Ability to intra-operatively compute 3D seed locations in prostate brachytherapy. 
2. Minimal alterations to the current prostate brachytherapy clinical protocol. 
3. An easy to use GUI (graphical user interface) based integrated clinical research system for validation. 
4. Furthering some core technical ideas in 3D X-ray reconstruction that could be applicable in other X-ray 

based clinical procedures like those in interventional orthopedic and angiographic surgeries. 
 
D KEY TRAINING ACCOMPLISHMENTS 

1. Close interaction with clinicians, medical physicists, and industry advisors. 
2. Various international training courses, workshops & conferences in medical imaging processing. 
3. Ability to do independent research, including mentoring undergraduate students for their research. 

 
E REPORTABLE OUTCOMES 

1. Publications in leading conferences and journals, as listed in the references section (including two 
flagship conference publications in MICCAI and two journal publications in Medical Physics). 

2. A prototype for subsequent commercialization and integration into the Interplant software. 
 
F CONCLUSIONS 
In conclusion, we have addressed the issue of intra-operative reconstruction of brachytherapy seeds, with 
minimal alteration to the current clinical protocol or any significant increase in cost. Preliminary experiments 
indicate a 3D accuracy of 1.6 mm mean and 0.2 mm standard deviation, which is acceptable for a successful 
clinical outcome. A prototype system for clinical trails and potential commercialization has also been tested & 
implemented.  
 
So what: The success of brachytherapy chiefly depends on our ability to intra-operatively cover the prostate 
with sufficient radiation while still avoiding excessive radiation to surrounding organs. Currently, such level of 
precision is not always achievable even by the most experienced physicians. Thus many implants fail or cause 
severe side effects owing to faulty seed placement, a problem what still cannot be corrected in the operating 
room. Our results indicate the feasibility of a system that could achieve intra-operative localization of the 
implanted seeds in relation to the prostate, to allow for in-situ dosimetric optimization and exit dosimetry. This 
ability to perform intra-operative dosimetry may change the standard of care in brachytherapy by allowing the 
physician to achieve technically excellent brachytherapy implants, resulting in improved disease control and 
quality of life for a large and steadily growing group of patients.  
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Abstract 

 
C-arm fluoroscopy is modelled as a perspective projection, the parameters of which are estimated through 
a calibration procedure. It has been universally accepted that precise intra-procedural calibration is a 
prerequisite for accurate quantitative C-arm fluoroscopy guidance. Calibration, however, significantly 
adds to system complexity, which is a major impediment to clinical practice. We challenge the status quo 
by questioning the assumption that precise intra-procedural calibration is really necessary. To derive 
bounds on reconstruction errors as a function of mis-calibration, we model the error using an affine 
transform. This is fairly intuitive, since small amounts of mis-calibration result in predictably linear 
transformation of the reconstruction space. Experiments indicate the validity of this approximation even 
for 50 mm mis-calibrations.  
 
The primary results presented here are related to virtual fluoroscopy (VF), one of the most commonly 
proposed techniques for providing intra-operative fluoroscopic guidance. The problem is twofold: (a) C-
arm calibration; and (b) C-arm distortion correction. Using our theoretical and experimental analysis on 
mis-calibrated C-arms, we propose a simple solution that could easily address the first issue, indicating 
that calibration is not required at all. Furthermore, to address the problem of pose dependant distortion 
correction, we propose a framework that can statistically study the maximum variation in distortion near a 
certain pose and then intra-operatively use an average correction. These theoretical derivations and 
experimental results make a strong case for the use of mis-calibrated C-arms, obviating the cumbersome 
intra-operative calibration process, potentially boosting clinical applicability of quantitative fluoroscopy 
in many procedures.   
 

 
Figure1: Mis-calibration shifts all 
reconstructed objects under an affine 
transformation. Relative location of objects is 
preserved.

Keywords: Calibration, C-arms, fluoroscopy guided procedures 
 
Description of purpose: Quantitative C-arm fluoroscopy 
measures the (relative) spatial transformation between two 
objects, as compared to the transformation between an object 
and the C-arm. Thus the central intuition is that while an 
incorrect calibration gives erroneous estimates for the absolute 
transformations, nevertheless it still provides acceptable relative 
estimates, implying that intra-operative calibration may not be 
needed. 
 
Method: To address the problem of pose dependant distortion 
correction (DC), data should be collected ‘near’ a certain pose 
pre-operatively. A principal component analysis on this data 
provides useful statistical information like the mean, primary 
deformation modes, etc. A simple strategy would be to use just 
the mean DC function ‘near’ a certain pose (most applications 
have a pre-determined protocol for taking X-ray images). To 
address intrinsic camera calibration, note that only relative transformations matter. Hence we propose that 
the C-arm to tracker registration should be done using a fiducial object near the patient region of interest 
(the full theoretical proof for this observation would be provided in the full paper).   



 
Experiments and Results: X-ray images of a calibration phantom with 300 BBs were taken in a C-arm 
sweep every three degrees. Near any desired C-arm position, a PCA is performed on the DC function. 
Three modes were found to capture 99% variation. The mean was used to model distortion at every pose 
within a cone near the desired location and the error noted.  

A VF setup was installed using the Polaris as the tracker and an accurate C-arm calibration 
phantom. The fluoroscope tracking (FTRAC) fiducial (0.6 mm translation, 0.3o rotation accuracy) was 
used to register the C-arm to the Polaris. Randomly chosen known calibration errors were added and the 
error of the VF guidance system plotted as a function of these errors. 

        
Figure2: (a) If a pre-computed average distortion correction is used, the distortion correction accuracy as a function of C-arm 
positioning error (left). (b) The experimental setup for the virtual fluoroscopy experiment (middle). The Polaris tracks the 
calibrated needle tip, while the FTRAC fiducial is used to register the C-arm to the tracker. (c) A standard X-ray image of the 
setup. The calibrated pointer tip is projected in the image in red. The actual tip location in the image serves as ground truth. 

   
Figure 3: There is no additional error added in a virtual fluoroscopy system due to mis-calibration. The three graphs show the 
accuracy of the system as a function of errors in a) X-ray source location; b) origin; and c) focal length. 

 
Conclusions: Fig 2(a) indicates that with a 10o C-arm re-positioning accuracy, using a mean distortion 
correction function leads to only a 0.6 pixel (0.2 mm) average distortion error at each pixel. This suggests 
that in many applications, a mean DC function ‘near’ a certain pose would suffice. From Fig. 3, we can 
conclude that mis-calibration errors as high as 50-100 mm do not seem to add any additional error in a 
virtual fluoroscopy setup. This suggests that using our suggested protocol, intra-operative C-arm 
calibration might not be necessary.  
 
New or breakthrough work to be presented: A theoretical framework along with experimental results 
to prove that intra-operative C-arm calibration is not required in a host of surgical applications. 
 
Indicate whether the work is being, or has been, submitted for publication or presentation 
elsewhere, and, if so, indicate how the submissions differ: Some preliminary ideas have been published 
last year, but the full framework, including these new results for VF have not been submitted anywhere. 



Statistical Characterization of C-arm Distortion with Application to Intra-Operative 
Distortion Correction 
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C-arm images undergo significant pose dependant distortion, which needs to be corrected for intra-
operative quantitative 3D surgical guidance. Several distortion correction techniques have been proposed 
in the literature, the current state of art uses a dense grid pattern rigidly attached to the detector. These 
methods become cumbersome for intra-operative use, such as 3D reconstruction, since the grid pattern 
interferes with patient anatomy. The primary contribution of this paper is a framework to statistically 
analyze the distortion pattern which leads to alternate intra-operative distortion correction methods. In 
particular, we propose a new phantom that uses very few BBs, and yet accurately corrects for the 
distortion.  
The high dimensional space of distortion pattern can be effectively characterized by principal component 
analysis (PCA), with only the first three eigen modes capturing about 99% of the variation. Phantom 
experiments indicate that distortion map can be recovered up to an average accuracy of about 
0.1mm/pixel with these three modes. With this prior statistical knowledge, a subset of BBs can be 
sufficient to recover the distortion map accurately. Simulations indicate that 14 BBs can recover 
distortion with average error of 0.14mm/pixel, accuracy sufficient for most clinical applications. These 
BBs can be arranged on the periphery of the C-arm detector, minimizing the interference with patient 
anatomy and hence allowing the grid to remain attached to the detector during surgery. The proposed 
method is fast, economical, convenient to use intra-operatively and independent of the C-arm, potentially 
boosting the clinical viability of applications such as quantitative 3D fluoroscopic reconstruction. 
 
Keywords: Methods: Quantitative image analysis; Modalities: X-ray CT; Other: distortion correction 
 
Presentation preference: Short Talk (poster presentation acceptable) 
 
Description of purpose: C-arm fluoroscopy is the most commonly used intra-operative imaging 
modality because of its low cost and portability. C-arm images suffer from distortion and the distortion 
varies from place to place and from pose to pose. The most common distortion correction method is to 
use a grid pattern BBs or lines on a plate attached to the detector. These methods become cumbersome for 
intra-operative use (such as for 3D reconstruction), since the grid pattern either significantly corrupts the 
patient’s image, or necessitates two X-ray shots at each pose (one with and the other without the grid). In 
this paper, we propose a statistical framework that enables us to do intra-operative distortion correction of 
the C-arm X-ray images using a simpler phantom with fewer BBs. 
 
Methods: X-ray images of the grid-pattern phantom with 300 BBs were taken in a C-arm sweep along 
the propeller axis, one every three degrees. Distortion was modeled with a fifth order 2D Bernstein 
polynomial with 72 vector coefficients. PCA is performed on the distortion vectors associated with these 
images. The first three principal modes capture 99% of the variation and are shown in Fig 1 
 
Experiments and Results: Simulation experiments were carried out on the images acquired from OEC 
9600 C-arm. PCA is performed on 104 images with 10 images used in leave-out tests. The distortion 
parameters can be recovered up to an average accuracy of 0.1mm/pixel and maximum error is about 
0.3mm. Validation experiments on the number of BBs required show that eight BBs are sufficient to do 
distortion correction with an average error of 0.2mm per pixel. These results show that distortion patterns, 
although complicated, are predictable with PCA. 



 

 
Fig 1. The first three principal modes of distortion vectors 

 

(a) (b)

(d)

(c)(c)

(e)  
Fig. 2 (Left) Residual Error in distortion vs number of points used for distortion correction.  

Fig.2. (Right) Results from simulation experiments using simpler phantom. (a) Knee X-ray image with phantom BBs 
overlaid in red color (b) distortion corrected image with dense grid pattern phantom  (c) (b) – (a) with distortion vectors 
overlaid in red (d) distortion corrected image with using BBs in (a) and PCA  (e) (b) – (d) with the residual distortion 
vectors overlaid in red 

New or breakthrough work to be presented: A very high dimensional C-arm distortion is statistically 
explained with the first three principal components. With this prior statistical knowledge, a significantly 
simpler phantom can be used to do intra-operative distortion correction. 
 
Conclusions: A statistical framework to characterize complex distortion patterns is presented. We 
extended this framework to develop a new simple phantom based intra-operative distortion correction 
technique. More experiments are being conducted to validate this framework like number of images 
needed to extract principal modes, to study if and how the principal modes change over time or across C-
arms etc. and the results will be included in the full paper. 
 
Indicate whether the work is being, or has been, submitted for publication or presentation 
elsewhere, and, if so, indicate how the submissions differ: This work has never been published before 
and is being submitted for the first time to SPIE Medical Imaging  
 
Acknowledgements: This work is supported in part by NSF ERC Grant EEC9731478, by NIH/NIBIB 
research grant R21-EB003616 and by DOD PC050170. 
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Abstract 
 
For quantitative C-arm fluoroscopy, we had earlier proposed a unified mathematical framework 
to tackle the issues of pose estimation, correspondence and reconstruction, without the use of 
external trackers. The method used randomly distributed unknown points in the imaging volume, 
either naturally present or induced by randomly sticking beads on the patient. These points were 
then inputted to an algorithm that computed the 3D reconstruction. The algorithm had an 8o 
region of convergence, which in general could be considered sufficient for most applications. 
Here, we extend the earlier algorithm to make it more robust and clinically acceptable. 
 
We propose the use of a circle/ellipse, naturally found in many images (ex: as the head of an 
inserted screw). Even if induced artificially, such curves are extremely easy and cheap to 
manufacture. We show that the projection of elliptic curves (also elliptic curves) constrain 5 out 
of the 6 degrees of freedom of the C-arm pose. To completely recover the true C-arm pose, we 
use an additional constraint in the form of any available point correspondences in the images. We 
provide an algorithm to easily obtain a virtual correspondence across all the images and show 
that two correspondences can always recover the true pose uniquely. Preliminary phantom 
experiments across three images indicate a pose estimation accuracy of 1.9o and 3D 
reconstruction accuracy of 1.5 mm using only an ellipse and two point correspondences. The 
method appears to be sufficiently accurate for many clinical applications and particularly 
appealing since it works without any significant modification of the clinical protocol. 
 
Keywords: Tracking, Localization, Registration, X-ray reconstruction, C-arm pose estimation 
 
Description of purpose:  Quantitative fluoroscopy has not found a large scale clinical 
acceptance, because of inherent technical difficulties involving intra-operative calibration of 
model parameters, pose tracking, and target matching/reconstruction. Advanced commercial and 
academic systems employ resident calibration structures and optical/electromagnetic trackers or 
calibrated radiographic fiducials to obtain the C-arm pose. The resulting equipage tends to be 
prohibitively expensive and complex that often interferes with the subject, image space, and 
clinical work-volume. In many applications, screw/needle ends, implanted surgical markers, 
special anatomy points etc. are naturally present in the images. By enforcing the "consistency" of 
these feature points across the images, one can potentially solve for all unknown parameters of 
calibration, pose recovery, matching, and reconstruction in one massive high-dimensional non-
linear optimization. We propose such a framework in this paper, in particular, where an elliptic 
curve is visible in the images. 
 
Method: We model the complete 3D reconstruction problem as a mathematical optimization 
problem, as shown in Fig. 1.  An image of an elliptic curve can be used to infer a 3D cone in 



 
Figure1:  The full mathematical description of the 3D 
reconstruction process.  The best reconstruction and pose 
parameters would minimize the back-projection errors. 

space on which the elliptic curve must lie. Through a series of mathematical transformations on 
this 3D cone that incorporate 
known physical properties of the 
elliptic curve, we constrain five of 
the six degrees of freedom 
required for pose reconstruction.  
An optimization algorithm can 
now use any additional constraint 
to lock into the correct pose. The 
constraint that we use is a 
correspondence across the images 
of anatomical points.  
  
 

Figure3: The high-precision experimental phantom (left). 3D 
locations of any feature wrt any other feature are known precisely 
by accurate fabrication. A sample X-ray image (right) of the 
phantom

Experiments and Results: A radiographic fiducial was used to track the C-arm (0.56 mm 
translation; 0.33o rotation 
accuracy), and was accurately 
attached to a point cloud phantom 
as shown in Fig 2. Images of this 
phantom were taken 25o around the 
AP-axis using a Philips Integris 
V3000 fluoroscope. Each image 
was hand segmented to establish 
the true segmentation and 
correspondence. This was used to 
create the ground truth. The true C-
arm pose and reconstruction was 
compared to that computed using the proposed algorithm.  A sample set of computed poses is 
presented in Fig. 3. Preliminary results from these phantom experiments indicate that we can on  

 
 

 

 

 

 

Figure 3: Three sample C-arm images (right) and the relative C-arm 
poses reconstructed from them using a single ellipse and two point 
correspondences (above).  Cones vertices represent x-ray sources, while  
cone bases and projected points lie in the image planes. 



average track a C-arm to a rotational accuracy of 1.9o using only two point correspondences.  
The algorithm achieves a 3D reconstruction error of 1.5 mm, an accuracy sufficient for most 
clinical applications.  Furthermore, additional correspondences will exist in most clinical 
applications; these correspondences further decrease this error. The algorithm has a large region 
of convergence and is free of initial estimates.   
 
Conclusions: A framework using elliptic curves for C-arm tracking and reconstruction without 
compromising on the available work-volume has been proposed. Experiments indicate an 
accuracy and robustness sufficient for most clinical applications. The framework obviates 
expensive external tracking devices and is capable of using information naturally present in a 
family of procedures. In applications where this information is not present, the framework easily 
extends by randomly attaching an ellipse or a few beads near the patient anatomy.  
 
New or breakthrough work to be presented: We propose a novel method to use a randomly 
placed elliptic curve to automatically track a C-arm and reconstruct in 3D any anatomy of 
interest. This method is both more economically and clinically feasible, when compared to most 
contemporary techniques. 
 
Indicate whether the work is being, or has been, submitted for publication or presentation 
elsewhere, and, if so, indicate how the submissions differ: This work has not been submitted 
for presentation anywhere else. 
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Abstract. For quantitative C-arm fluoroscopy, we have developed a
unified mathematical framework to tackle the issues of intra-operative
calibration, pose estimation, correspondence and reconstruction, with-
out the use of optical/electromagnetic trackers or precision-made fiducial
fixtures. Our method uses randomly distributed unknown points in the
imaging volume, either naturally present or induced by randomly stick-
ing beads or other simple markers in the image pace. After these points
are segmented, a high dimensional non-linear optimization computes all
unknown parameters for calibration, C-arm pose, correspondence and
reconstruction. Preliminary phantom experiments indicate an average C-
arm tracking accuracy of 0.9o and a 3D reconstruction error of 0.8 mm,
with an 8o region of convergence for both the AP and lateral axes. The
method appears to be sufficiently accurate for many clinical applications,
and appealing since it works without any external instrumentation and
does not interfere with the workspace.

1 Introduction

C-arm fluoroscopy is ubiquitous in general surgery, interventional radiology, and
brachytherapy, due to its real-time nature, versatility, and low cost. At the same
time, quantitative fluoroscopy has not found a large scale clinical acceptance,
because of inherent technical difficulties involving intra-operative calibration of
model parameters, pose tracking, and target matching/reconstruction. While
these aspects have been studied extensively, a clinically extant solution appears
to be lacking. Advanced commercial and academic systems employ resident cal-
ibration structures [1,2,3] and optical/electromagnetic trackers or calibrated ra-
diographic fiducials [4,5,6] to obtain the C-arm pose. The resulting equipage
tends to be prohibitively expensive and complex that often interferes with the
subject, image space, and clinical work-volume. While some procedures may be
more tolerant to these shortcomings, despite pressing clinical needs, quantitative
fluoroscopy is completely missing from brachytherapy, which is the motivating
application of our project.

It can be observed that point correspondence across images (without any
knowledge about their 3D locations) is a very strong constraint for pose esti-
mation, also referred to as bundle adjustment in computer vision [7]. In fact,

� This work has been supported by DoD PC050170 and NIH 1R43CA099374-01.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4190, pp. 494–502, 2006.
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six known correspondences across two X-ray images are sufficient to constrain
the relative C-arm pose. If eight or more correspondences are available, well
known linear methods exploiting the fundamental matrix can be applied [7],
while with five correspondences, a maximum of ten degenerate solutions are
possible. Thus, in general, five point correspondences across three X-ray im-
ages can recover the C-arm locations. Theoretically four correspondences have
been shown to be sufficient to recover the poses in general, barring a zero mea-
sure set of the configurations that can lead to multiple solutions [8]. Though,
these configurations are known to lie on certain special cubic curves (incld.
cases when three points project collinearly on any X-ray image), an intuitive
understanding of all these point constellations is not yet known. Moreover, it
should be noted that certain special point constellations can always be cre-
ated, such that they can never be resolved uniquely using any fixed number of
images.

In many applications, radioactive seeds, screw/needle ends, implanted surgi-
cal markers, special anatomy points etc. are naturally present in the images.
By enforcing the ”consistency” of these feature points across the images, one
can potentially solve for all unknown parameters of calibration, pose recovery,
matching, and reconstruction in one fell swoop, in one massive high-dimensional
non-linear optimization loop. In applications that do not have an adequate in-
formation in their images, one can place a few additional sticky beads or wire
markers randomly on any temporarily stationary part (for example on the pa-
tient skin or under the operating table), and then apply the same framework.
Thus the subject of this paper is a unified mathematical framework to solve
the problems of intra-operative calibration, pose tracking, and target match-
ing, and reconstruction without any sort of pre-fabricated external fiducials or
tracking instrumentation. In applications where there is no need for real-time
tracking of mobile surgical instruments, for example in prostate brachyther-
apy, the complete elimination of intra-operative tracking and calibration en-
tourage promises to lead to a wider clinical acceptance of quantitative 3D C-arm
fluoroscopy.

2 Methods and Materials

The three integral components of this problem, in decreasing order of complex-
ity are: (1) point correspondences; (2) C-arm pose; and (3) C-arm geometry
calibration. We assume that the points have been segmented from the X-ray
images. Though generic and extendible to any number of images, we currently
develop the framework for exactly three images. The reason for not using two
images is that they have reconstruction singularities, solved by introducing a
third image, which in turn makes the problem NP-Hard (i.e. no algorithm can
even verify the optimality of a given solution in polynomial time). The theoret-
ical complexity of four or more images is similar to that of three images. Thus
we propose a detailed solution for three images, which is easily extendible to
multiple images.
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2.1 Mathematical Framework

Let N be the number of points chosen arbitrarily from the clinical work volume
and let Nm be the number of points detected in images Im with pose [Rm, Tm]
and projection model Mm. We do not assume that the 3D points are distinctly
visible in all the images, but are allowed to be hidden under one another. Though
this makes the correspondence problem significantly harder, it is a more realistic
representation of the clinical setting. Let slm be the position of lth point in mth

image. When three images are used, the problem can be formulated as a large
optimization problem.

arg min
R, T , M, f

N1∑

i=1

N2∑

j=1

N3∑

k=1

Cijkfijk

where
N1∑

i=1

N2∑

j=1

fijk ≥ 1 ∀ k ;
N2∑

j=1

N3∑

k=1

fijk ≥ 1 ∀ i;

N3∑

k=1

N1∑

i=1

fijk ≥ 1 ∀ j and fijk ∈ {0, 1}

(1)

Cijk is the the cost (described later) of matching point si1 to points sj2 and
sk3. Note that it varies with any variation in R, T , M. fijk is a discrete variable
taking a value 1/0, and deciding the correctness of the match < i, j, k >. The
inequalities force every segmented point to be chosen atleast once. Thus, f repre-
sents any feasible global match (and vice versa), with the cost of that correspon-
dence given by

∑∑ ∑
Cijkfijk. The problem hence is to compute R, T , M, f

that minimize the total cost. It should be noted that since the images represent
a real situation, this optimization has a solution with a near-zero cost. The only
case in which a unique solution might not exist is when the information is not
sufficient, i.e. when the number of beads are less than 7 or when they lie in a
degenerate configuration.

Complexity: This is a non-linear optimization in N3 + 20 variables with 3N2

constraints. The pose and model parameter optimization is in a continuous 20 di-
mensional space (2×6 for each pose, 3×3 for each model, one less for scale), while
that for the correspondences is in a discrete combinatorial space. Note that we
assume pixel sizes to be constant and known. Even if the pose & model param-
eters are known, it can be shown that the combinatorial optimization reduces
to the minimum-weight tri-partite matching problem, known to be NP-Hard.
This severely ill-conditions the problem, necessitating methods to constrain the
problem adequately. It should be noted that though the global optima for two
image matching can be proved to have only a cubic complexity, in many cases
it suffers from singularities (Figure 2 (a)), forcing the use of a third image and
hence an exponential complexity.

3D Reconstruction: Though crucial, 3D reconstruction is not explicitly in-
corporated into the framework. By optimizing for the cost, we also indirectly
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compute the best reconstruction. Thus when the true pose parameters have
been computed, the correct 3D reconstruction will come out as a byproduct. In
the meanwhile, we shall only concern ourselves with the explicitly incorporated
pose, correspondence and calibration parameters.

C-arm Imaging Model: C-arm imaging is typically approximated as a 5-
parameter projection camera [1,2,3,4] to be calibrated intra-operatively for each
individual image. Recently, however, it has been shown [9] that C-arm calibra-
tion might not always be necessary (Figure 1), implying that any reasonable
calibration can be assumed for each image without actually calibrating at any
time. Note that we assume the imager pixel sizes to be fixed and known.
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Fig. 1. Mis-calibration shifts all reconstructed objects, but keeps the relative pose
nearly constant (left). The flowchart for the correspondence algorithm (right).

The central intuition is that while an incorrect calibration gives erroneous es-
timates for the absolute transformations, nevertheless it still provides acceptable
relative estimates. Experimental results corroborate the theoretically derived
bounds in that mis-calibration by as much as 50 mm still allows for tracking
with an accuracy of 0.5 mm in translation and 0.5o in rotation, and such mis-
calibration does not impose any additional error on the reconstruction of small
objects [9]. Thus to condition the optimization in Equation (1) better, it it advis-
able not to solve for the imaging parameters using sparse data from the image,
but just use nominal values that may be known from a pre-calibration or the
manual/header. An alternate perspective is to notice that since reconstruction
errors change only negligibly with calibration errors, any attempt to calibrate
using a sparse point set (instead of a very accurate calibration fixture) will ill-
condition the problem by allowing for a whole space of feasible solutions. Thus
it is wiser to fix the value at a choice that is practically close to reality. Later, if
needed, the calibration can be further refined after the optimization converges.

Though we do not explicitly address the issue of distortion correction, ad-
vancements in intensifier tubes allow for lesser distortion and more recently the
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advent of flat panel detectors obviates this step altogether. Furthermore, many
application like brachytherapy, with their limited C-arm workspace, allow for a
constant pre-operative distortion correction.

Correspondence: Assuming known pose parameters, we converted the point
correspondence problem to a weighted tri-partite matching problem in Equa-
tion (1), an NP-Hard combinatorial optimization problem. An attractive ap-
proximate solution using a network-flow-based combinatorial optimization has
recently been extended to efficiently deal with ”hidden seeds”, (i.e. points that
overlap in some images) in practically O(N3) times [10].
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Fig. 2. A third image is needed to resolve two-image singularities (left). The flow
network formulation used to solve the correspondence problem.

Sets A, B, C, and D, represent an image each. Links with a cost connect
every feasible match between any two images. A flow of value N originates at
the source S and ends at sink T. The problem reduces to computing a min-
cost flow, easily computed using the cycle cancelling algorithm (pushes negative
cycles until there are none left). A flowchart is illustrated in Figure 1. Since the
problem is NP-hard the network cannot completely constrain the same point in
both set A and D. Nevertheless, it works well, producing near perfect matchings.

Cost Metric: In general, any cost-metric that directly measures the deviation
from the observation should perform well. The metric should incorporate all the
available information, making the global minimum sharper and the algorithm
robust. One good choice for a metric is projection error (PE). For any given
set of poses and correspondence, the intersection of the three lines that join
each projection to its respective x-ray source can be computed using a closed
form solution that minimizes the L2 norm of the error. PE can be computed by
projecting this 3D point in each image and then measuring the distance between
the projected location and the observed location of the point.

2.2 Optimization Strategy

Due to the convolution of both continuous and discrete parameters, the opti-
mization in Equation (1) becomes ill-conditioned. Incorrect pose estimates will
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invoke incorrect correspondences, especially for dense point clouds. However, it
should be observed that incorrect pose estimates and the subsequent correspon-
dences invoked by it, are typically inconsistent. This is because, while it is true
that any given pose estimates invoke a correspondence, it is also true that any
given correspondence also invokes a unique pose where Equation (1) will be min-
imized for that correspondence. Thus the desired minima will be such that the
current pose invokes a correspondence, and the correspondence in turn will also
invoke the same pose (with near zero cost). This order of stability we believe, will
exist only at the true unique global minima. We propose an iterative strategy
that exploits this observation, in spirit similar to a coordinate descent method.

Another observation to make is that given any generic estimate of the pose, the
correspondence is usually completely incorrect. Nevertheless, some other pose in
the vicinity can usually establish atleast a few correct correspondences (∼ 10%).
This new pose estimate will behave like a local minima. We say behave because,
for any fixed pose estimate, computing f such that Equation (1) is minimized is
not a polynomial time computation (N !2). Thus only a working algorithm can
be practically available. Even though our correspondence algorithm has been
experimentally shown to be over 98% accurate near the correct pose, its as-
sumptions start breaking down at incorrect estimates. Nevertheless, if we can
estimate these few correctly matched points and block the rest, we can quickly
converge to the correct answer. In the absence of any additional information, a
working strategy is that if a flow in the network originates at a vertex i in set A
and also ends up at vertex i in set D, then this flow is self-consistent. We choose
a subset of self-consistent points as matched points (typically the ones closer to
the average PE). These few points can now be easily used to update the pose
estimates, which in turn could provide a improvement in the correspondences at
a later stage. Thus the algorithm iteratively establishes the best possible corre-
spondences (keeping the pose relatively constant) and then uses a self-consistent
subset of points to refine the pose. As the iteration progresses, it can stop only at
a self-consistent parameter choice where the pose and correspondence perfectly
complement each other.

For very high density clouds, the optimization might require non-practical num-
ber of iterations to converge. Two main methods to constraint such cases are: (1)
establishing a good initial estimate using prior knowledge about the surgical pro-
tocol and workspace constraints. (2) in the absence of good initial estimates, a
couple of known correspondences can prove to be sufficient. These might be natu-
rally available or artificially induced. In any case, this might become a necessary
step since projective geometry can recover the 3D reconstruction only up to an
arbitrary scale. To recover the scale, information external to the image is required
(ex. length of an inserted screw), allowing for a few known correspondences.

3 Phantom Experiments and Results

A radiographic fiducial was used to track the C-arm (0.56 mm translation; 0.33o

rotation accuracy), and was accurately attached to a point cloud phantom as
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shown in Figure 3. The cloud phantom comprises of multiple slabs, thus capable
of multiple random point configurations. 100 points with 1.56 points/cc were
used. X-ray images within a 20o cone around the AP-axis were randomly taken
using an Philips Integris V3000 fluoroscope and dewarped. Thus both the seed
locations and X-ray pose were not biased/optimized in any way, closely repre-
senting an uncontrolled surgical scenario. Each image was hand segmented to
establish the true segmentation and correspondence. The true C-arm pose and
reconstruction was compared to that computed from the algorithm.

Fig. 3. An image of the point phantom attached to the fiducial (left). The phantom can
replicate many point configurations. A typical X-ray image of the combination (right).

We divided the experiments into three separate cloud sizes: sparse having an
average 3D point separation ≥ 25 mm, medium having ∼ 15 mm, while a high
density one being ≤ 10 mm. These represent different types of surgical scenarios,
ranging from orthopedic to brachytherapy. We generated random clouds using
10−20, 20−40 & 40−100 points. Region of convergence (ROC), accuracy of C-
arm tracking and reconstruction error (RE) are the three metrics used to evaluate
performance. Since the scale is not directly recoverable, only the rotation errors
are used to study errors in the pose. To study RE, the scale is established using
two points from the fiducial.

Figure 4 plots the performance of the algorithm. Each data point is averaged
using 10 random runs of the initial estimate and the point cloud. When no
prior correspondences are available, the algorithm could have some difficulty in
converging reliably. Pose recovery accuracies vary with the number of available
points, the average being about 0.9o, while RE remains fairly stable at 0.8 mm.
The ROC for sparse and medium sized clouds is 8−10o (individually along both
AP and lateral axes), while it is about 6o for dense implants.

Runtime: The algorithm was implemented in Matlab 7 on a Windows PC
(3.2 GHz P4, 1GB RAM). The algorithm would typically converge in anywhere
between 3-7 total iterations, taking 2-7 minutes, depending on the point cloud
density and initial estimate. However, it should be noted that it spends about
50-70% of the time for file I/O (a Matlab constraint). Thus a C/C++ imple-
mentation is expected to run in 30s.
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Fig. 4. The performance of the algorithm as a function of initial estimate. (a) is with
no known correspondences, while (b)-(d) are with a few known ones.

4 Conclusion

A unified framework for point correspondence, C-arm tracking and reconstruc-
tion has been proposed and experimentally validated on phantoms. The exper-
iments indicate an accuracy of 0.9o for tracking, 0.8 mm for 3D reconstruction
and a convergence region of 8o (each) in both the AP and lateral axis of rotation.
The framework does not need external fiducials for C-arm pose estimation and
is capable of using information naturally present in the X-ray images of a family
of clinical applications, such as prostate brachytherapy. In applications where
this information is not present, or a greater accuracy is desired, the framework
easily extends by randomly attaching beads around the patient. Our technique
does not compromise on the available clinical work volume. The framework can
also accommodate any available prior information on projection angles or corre-
spondences to constrain the optimization better, and thereby to achieve a higher
accuracy.

The main concern for the clinical use of methods relying heavily on high
dimensional optimization is that of providing uniformity and reliability in per-
formance. We have conducted our validation on randomly selected views and
number/distribution of the points, indicating the robustness of the algorithm to
these issues. Nevertheless, this is only a first step and further work to achieve bet-
ter uniformity in the results is desirable. Though the alternative of well designed
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calibration fixtures and image acquisition procedures are also available, they
become cumbersome in many procedures. Further development of the current
approach or even an amalgamation of the two approaches, could significantly
improve the current clinical viability of intra-operative quantitative fluoroscopy.
The development of a clinical prostate brachytherapy system to further vali-
date our approach is currently underway. Note that, even though the driving
application was prostate brachytherapy, the method also has potential in many
synergistic applications in orthopedics and angiography.
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Introduction: C-arm fluoroscopy is the most widely used intra-operative 
imaging modality in orthopedic surgery [1], but it presently lacks the ability 
for robust and easy quantitative guidance. Quantitative reconstruction needs 
to solve the problems of C-arm calibration (incl. image distortion) and C-arm 
pose tracking. Though the first is a well-studied problem, pose recovery on un-
encoded C-arms is still a major technical problem. 

Off-the-shelf tracking devices were a natural choice to achieve pose recovery. 
Unfortunately, auxiliary trackers are sometimes impractical for various reasons 
like expense, complexity and clinical feasibility (optical trackers require line 
of sight, while EM trackers suffer from field distortion). This led us to revisit 
fiducial-based tracking. The history of radio-opaque fiducials for C-arm tracking 
starts as early as 1987 (a review can be found in [2]), with the number of beads 
going as high as 613 for some of the preliminary works. Though the accuracies 
were acceptable, the fiducials tended to be too large and cumbersome to use. To 
make the fiducials feasible, recent publications have proposed smaller fiducials 
by compact bead placement, at the expense of a decrease in accuracy. 

Our previous contribution was the development of a novel fluoroscope 
tracking (FTRAC) fiducial [2]. The FTRAC fiducial uses parametric curves, in 
particular, proposing the use of ellipses. 3D ellipses are constrained to always 
project as ellipses (closed parametric curves), they achieve sub-pixel image 
segmentation, and allow for a closed form mathematical framework. Thus the 
FTRAC fiducial not only offered a decrease in size, but also an enhancement 
in accuracy, allowing for precise object reconstruction. We have previously 
reported a 3x3x6 cm fiducial. In this paper, we propose to further decrease the 
size at a marginal loss in accuracy. 
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Methods: The primary contribution of this work is the use of small size 
parametric curves (ellipses & straight lines), in addition to spherical beads that 
have been used conventionally. The fiducial encodes six DOF in a single image 
by creating a unique view from any direction. Theoretically, three points or 
three straight lines or one ellipse with one point is sufficient for pose recovery. 
In practice, any redundancy will boost accuracy. We used an optimized 
constellation of six beads, three straight lines and two ellipses. 

First the fiducial is segmented automatically. Now, given any pose of the C-arm, 
a 48 dimensional error metric is computed, accompanied by its corresponding 
Jacobian. This is done via obtaining an expected projection of the fiducial and 
comparing against its true segmentation. Next, a non-linear Gauss-Newton 
optimizer rapidly computes the pose of the C-arm. The algorithm converged 
without failure, in over tens of thousands of runs. 

An un-optimized Matlab implementation takes around 3.5 s to run (2.4 GHz, 
Intel P4, 512MB RAM, Windows 2000; excl. image transfer and processing 
time). This indicates that an optimized C++ implementation would perform 
near real-time.

Results: An already reported larger version of the fiducial (3x3x6 cm) was 
previously tested using synthetic data and also experimentally on a precisely 
machined mechanical phantom. The simulation experiments suggested an 
accuracy of 0.2 mm in translation, while the phantom experiments exhibited 
an accuracy of 0.56 mm (0.33° in rotation and 0.7 mm for 3D reconstruction). 
Thus, simulations tended to underestimate the experimental error by about 
60%. 

We studied the sensitivity of pose recovery by scaling the diameter & length, but 
without significantly altering the relative configuration. To accommodate the 
bead/wire thickness, a minimum separation is maintained between neighboring 
features. Hence, the length of the fiducial is not scaled directly in proportion 
to the diameter. Though the length of a 30 mm diameter fiducial is 60 mm, the 
length of a 10 mm diameter fiducial is maintained at 35 mm (as compared to 
20 mm). 

The attached figure (0.5 mm simulated image segmentation error) plots the 
translation and rotation errors as a function of fiducial size. As expected, the 
translation error along the imaging direction was significantly higher than that 
parallel to the image plane. The rotation error on the other hand was similar for 
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all axes. The simulated translational tracking accuracy of a 10 mm diameter 
fiducial was 0.4 mm. Assuming the 60% underestimation from simulations, 
a 10 mm diameter FTRAC fiducial promises an accuracy of about 1 mm in 
clinical circumstances. Using the same underestimation, the 15 mm and 20 
mm FTRAC fiducials are expected to offer 0.85 mm and 0.7 mm tracking 
accuracies, respectively. Phantom experiments to validate the same are currently 
underway.

Dependence of 
C-arm tracking to 
fiducial size.

Discussion: A small fiducial for radiographic C-arm tracking was designed 
and computationally evaluated. The method promises accuracies similar to 
other tracking alternatives, and to be sufficiently robust for intra-operative 
quantitative C-arm fluoroscopy. Simulation studies indicate that the size can be 
reduced to 1x1x4 cm, while still maintaining an accuracy of about 1 mm.

There is a tradeoff between clinical feasibility (fiducial size) and desired 
accuracy, with a small sized FTRAC fiducial further facilitating a plurality of 
fluoroscopically guided procedures. The smaller sized FTRAC fiducial holds 
promise for tracking pencil-like devices such as needle guides, drill guides, 
etc (using a stationary C-arm). Furthermore, it has been shown recently that 
miscalibrated C-arms can still reconstruct 3D information with high accuracy 
[3] in several applications. Thus a short-range conventional EM or optical tool 
tracker, along with the FTRAC fiducial and an uncalibrated C-arm could still 
allow for accurate virtual fluoroscopy or 3D guidance with reconstruction.
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Experimental Setup:The accuracy of the tracking algorithm was validated 
on an X-ray fluoroscopy test bench.  A modified anthropomorphic Rando™ 
phantom was placed in the field-of-view in order to emulate the 
background presented by a patient.  Two sites on this phantom were used – 
the pelvis and the thorax.  The pelvis presents a case of low signal while the 
thorax presents a cluttered background.  The tool to be tracked was attached 
to a linear actuator and moved in known increments while capturing 
fluoroscopic images.  The acquired image sequence was then sampled to 
generate new image sequences for testing the tracking algorithm.  Results:  
The algorithm was robustly able to track the tool under a low signal in the 
abdomen, and under dense clutter presented by the ribs in the thorax.  The 
rms error in each case was found to be as little as 0.7mm and 0.12mm, 
respectively.  Conclusion:  This study demonstrates the robustness of 
estimation under noise and clutter that can be achieved when tracking tools 
in a fluoroscopic sequence using a particle filtering approach.   
 
WE-C-330A-02 
Cone-Beam CT for Image-Guided Head and Neck Surgery:  
Assessment of Dose and Image Quality Using a C-Arm Prototype 
M Daly*, 1 J Siewerdsen, 1, 2 D Moseley, 1 D Jaffray, 1, 2 (1) Ontario Cancer 
Institutue, Princess Margaret Hospital, Toronto, ON, Canada, (2) 
Department of Medical Biophysics, University of Toronto, Toronto, ON, 
Canada 
 
Purpose:  To quantify radiation dose to patient and staff during 
intraoperative cone-beam CT (CBCT)-guided head and neck surgery, and 
investigate 3D imaging performance as a function of dose.  Method and 
Materials:  Dose and image quality measurements were acquired on a 
mobile C-arm modified at our institution to provide flat-panel CBCT.  
Imaging dose was measured in a custom-built 16 cm cylindrical head 
phantom at four positions (isocenter, anterior, posterior, and lateral) as a 
function of kVp (80–120 kVp) and C-arm trajectory (“tube-under” and 
“tube-over” 180o orbits).  In-room exposure was measured at positions 
around the operating table and up to 2 m from isocenter.  3D image quality 
was assessed in CBCT reconstructions of an anthropomorphic head 
phantom containing contrast-detail spheres (11-103 HU; 1.6-12.7 mm).  
The contrast-to-noise ratio (CNR) was evaluated across a broad range of 
dose (0.6–23.3 mGy).  Results:  Dose in the 16 cm phantom (100 kVp; 
“tube-under” orbit) was 0.059 (isocenter), 0.022 (anterior), 0.10 (posterior), 
and 0.056 (lateral) mGy/mAs.  Dose to the eyes (anterior) was reduced by a 
factor of 10 for “tube-under” versus “tube-over” orbits.  In-room exposure 
for a typical CBCT scan (~10 mGy to isocenter) ranged from 33 mR at the 
anesthetist position, to <0.5 mR at 2 m from isocenter.  CNR increased as 
the square root of dose, with excellent visualization of bony and soft-tissue 
structures in the anthropomorphic head phantom achieved at ~3mGy and 
~10mGy, respectively.  Conclusion:  The prototype C-arm CBCT system 
demonstrates excellent visualization of bony and soft-tissue structures at 
dose levels low enough for repeat intraoperative imaging.  High-
performance image-guidance with respect to bony and soft-tissue anatomy 
was achieved at doses <~3mGy and <~10mGy, respectively.  For guidance 
of head and neck surgery, significant dose sparing to the patient’s eyes (a 
factor of 10) is achieved using a “tube-under” (rather than “tube-over”) 
180o orbit. 
 
WE-C-330A-03 
Seed Segmentation in C-Arm Fluoroscopy for Brachytherapy Implant 
Reconstruction 
S Vikal*1, A Jain2, A Deguet2, D Song 3, G Fichtinger2, (1) RWTH Aachen 
University of Technology, DE, (2) Johns Hopkins University, Baltimore, 
MD, (3) Johns Hopkins University School of Medicine, Baltimore, MD 
 
Purpose:  Intra-operative dosimetry in prostate brachytherapy critically 
depends on discerning the 3-D locations of implanted seeds.  The accuracy 
of 3-D seed reconstruction step is, in turn, limited by the accuracy with 
which the position and orientation of individual implanted seed in the 
fluoroscopic images can be found.  A method for robustly segmenting the 
seeds in fluoroscopic images is proposed here.  Methods and Materials:  
The process of determining the locations and orientations of implanted 
seeds is sub-divided into three main steps.  In the first step, the image is 
segmented by shape-size based morphological approach to eliminate 
background noise and do away with non-uniform brightness of the image, 
to get seed-like regions.  These regions are either single seeds or 
overlapping multiple seed clusters.  In the second step, the regions are 

analyzed and classified definitively, in a two-phase statistical process 
coupled with information extraction from original intensity image, into two 
classes:  single seed and overlapping multiple seed cluster.  In the third 
step, the region belonging to overlapping multiple seed cluster is resolved 
into its constituent individual seeds through a simple and novel technique.  
Results:  The proposed algorithm was tested on a set of ten clinical 
fluoroscopic images.  The algorithm correctly determines the seeds with 
overall average of 99.57%.  The clusters are not correctly resolved only in 
two images (2 clusters each, 1.7% and 1.6% of total seeds in respective 
implants).  One false positive (noise labeled as seed) each is reported in two 
images, both the cases being where the tip of catheter appears to be of the 
size and shape of seed.  Conclusions:  The algorithm builds on an existing 
framework of morphological processing and provides further improvements 
in classification and cluster resolution.  The algorithm appears to be robust 
and accurate despite the poor resolution of clinical images. 
 
WE-C-330A-04 
Effect of Projection Angles Used in Multi-View Reconstruction (MVR) 
Using Images From a Microangiographic (MA) Detector and An 
Image-Intensifier (II) System 
V Patel*, A Kuhls, P Noël, A Walczak, C Ionita, R Chityala, R Tranquebar, 
H Rangwala, S Kasodekar, G Yadava, K Hoffmann, D Bednarek, S Rudin, 
Toshiba Stroke Research Center, SUNY at Buffalo, Buffalo, NY 
 
Purpose:  The sensitivity of a new 3D Multi-View Reconstruction (MVR) 
angiography technique to the projection angles used is evaluated by 
comparing 3D centerlines calculated from combinations of three 
projections acquired from two imaging systems with that from micro-Cone 
Beam CT (µCBCT), which is taken as truth.  Method and Materials:  A 
3D centerline of a contrast-filled carotid vessel phantom was reconstructed 
from image data acquired using a custom-made µCBCT system with a 
microangiographic (MA) detector (45 µm pixels, 4.5 cm field-of-view 
(FOV)).  Projection images of the same phantom were also acquired using 
the MA and an image intensifier (II) detector system (120 µm pixels, 4.5 in 
FOV) on a C-arm x-ray unit.  The MVR technique was used to compute 3D 
centerlines for 12 combinations of projection angles.  Each 3D MVR 
centerline was aligned with the µCBCT “true” 3D centerline using a 
Procrustes technique, and a root-mean-square (RMS) deviation was 
calculated.  Results:  The average RMS deviation for the MA-MVR 
centerlines is 25 µm with a standard deviation of 3 µm over the 12 different 
projection-angle combinations, whereas the average RMS deviation for the 
II-MVR centerlines is 41 µm with a standard deviation of 4 µm over these 
same combinations.  The RMS deviation as a percent of the internal vessel 
diameter, 0.75 mm, is 3.3% for the MA and 5.5% for the II and appears to 
be independent of view selection.  Conclusion:  For the MVR technique, 
the improved resolution of the MA resulted in improved centerline 
determination compared to the II system.  For both detectors, the selection 
of a particular projection set had little effect on the RMS centerline 
deviation.  The low RMS deviations for both detectors indicate that the 
MVR technique can provide accurate 3D centerlines. 
 
(Partial support from NIH Grants R01-NS43924, R01-EB02873, R01-
HL52567, R01-EB02916, and Toshiba Medical Systems Corporation) 
 
WE-C-330A-05 
Segmentation of Radioactive Seed in 3D Ultrasound Images for 
Intraoperative LDR Prostate Brachytherapy 
Z Wei*, London Health Sciences Center, and Robarts Research Institute, 
London, Ontario, Canada; A Fenster, Robarts Research Institute, and the 
University of Western Ontario, London, Ontario, Canada 
 
Purpose:  Develop and evaluate an algorithm to automatically localize 
implanted radioactive seeds in 3D ultrasound images for dynamic 
intraoperative low dose rate (LDR) brachytherapy procedures, in which all 
phases of the procedure are performed in one session to deal with 
variability in the current prostate brachytherapy.  Method and Materials:  
Intraoperative seed segmentation in 3D TRUS images is achieved by 
performing a subtraction of the image before the needle has been inserted, 
and the image after the seeds have been implanted.  The seeds are searched 
through a thresholding operation in a “local” space determined by the 
needle position and orientation information, which are obtained from a 
needle segmentation algorithm.  To test this approach, 3D TRUS images of 
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TU-EE-A3-01 
2D-3D Registration of Portal Images with the Planning CT for 
Detection of Patient Positioning Errors  
G Mu*, P Xia, O Morin, UC San Francisco, San Francisco, CA 
 
Purpose:  To compare the use of 2D-3D automatic registration of portal 
images with the planning CT for detection of patient positioning errors and 
the use of 3D-3D registration of MVCBCT with the planning CT.   
 Method and Materials:  Two prototype programs were used to carry out 
2D-3D and 3D-3D image registrations.  To assess the accuracy and 
robustness of these programs, 25 sets of 2D portal images, 25 sets of 
megavoltage conebeam CT (MVCBCT) images with known positioning 
shifts were acquired.  A planning CT of the RANDO was also acquired.  
The known shifts between these image sets were ranged from –17mm to 4 
mm, -20mm to 5mm and –12mm to 6mm, with uncertainty of 4.278mm, 
5.359mm, 3.396mm along the latitude, longitude and vertical directions  
Results:  The average differences between 2D-3D method and the known 
shifts were -0.632±0.318 mm, -0.121±0.437 mm, -0.416±0.346 mm, 
compared to 3D-3D method of 1.487±0.342 mm, -0.127±0.528 mm, 
0.083±0.48 mm along the latitude, longitude and vertical directions.  The 
average differences between 2D-3D and 3D-3D image registration methods 
were 0.86±0.286 mm, -1.39±0.347 mm, -0.33±0.303 mm Conclusion:  
Both 3D-3D and 2D-3D registration methods can detect positioning errors 
within 1 mm.  For a rigid body, 2D-3D method is sufficient.   
 Conflict of Interest:  This project is partly funded by SIEMENS. 
 
TU-EE-A3-02 
Evaluation of a 2D-3D Registration Method for External Beam 
Radiation Therapy 
H Jans*, A Syme, S Rathee, B Fallone, Cross Cancer Institute, Edmonton, 
Alberta 
 
Purpose:  To implement and validate a 2D-3D registration method for 
determining 3D patient position in external beam radiotherapy using 
orthogonal EPID images and megavoltage digitally reconstructed 
radiographs (MDRRs).  To test the methods dependence on cost function, 
image pre-processing and parameter space sample density, and determine 
the dependence of registered rotations on setup translations and vice versa.  
Method and Materials:  Orthogonal EPID image of a humanoid phantom 
in different poses (3D rotations and translations) were acquired in anterior-
posterior and latero-lateral view.  The EPID images were registered with a 
data base of orthogonal MDRRs, calculated as projection images through 
the phantom’s CT data set at rotation angles within ±5°.  Registration 
results were compared for three different cost functions (least-squares, 
cross-correlation and mutual information), different image pre-processing 
techniques (unsharp masking, histogram matching) and for isolated and 
combined rotations and translations.  The influence of setup translations on 
registration results for rotations, and vice versa, was investigated and 
compared with a simple model.  Results:  Image pre-processing improves 
registration precision by more than a factor 2.  Three dimensional 
translations were registered with better than 0.5 mm (one standard 
deviation) when no rotations were present.  Three-dimensional rotations 
registered with a precision of better than 0.2° (1 SD) when no translations 
were present.  Combined rotations and translations of up to 4° and 15 mm 
were registered with a precision of better than 0.4° and 0.7 mm 
respectively.  Mutual information resulted in the most precise registration.  
Setup translations influence registered rotations, mostly following a simple 
theoretical model, but not vice versa.  Conclusion:   Precise registration 
requires image pre-processing and benefits from interpolation of the 
parameter space.  Influence of object translation on registration of out-of-
plane rotations can be significant; these “pseudo rotations” can be corrected 
using the theoretical model when only one projection image is used for 
registration (e.g.  fluoroscopy).   
 
 
 

TU-EE-A3-03 
Automated Segmentation of Radiographic Fiducials for C-Arm 
Tracking 
S Vikal*1 , A Jain2, A Deguet2, D Song3, G Fichtinger2, (1) RWTH Aachen 
University of Technology, DE, (2) Johns Hopkins University, Baltimore, 
MD, (3) Johns Hopkins University School of Medicine, Baltimore, MD 
 
Purpose:  Intraoperative quantitative C-arm fluoroscopy guidance depends 
on discerning the relative pose of images (pose recovery).  A possible 
method is to use radiographic fiducials visible in fluoro images [1,2].  We 
propose a robust and fast method for segmenting fiducials designed for 
brachytherapy applications. Methods and materials:  The fiducial contains 
points, lines and ellipses made from BBs and wires[1].  The algorithm 
integrates the a-priori knowledge of fiducial’s mechanical construction in a 
cleverly devised workflow.  The BB segmentation is achieved using 
morphological top-hat transform.  This information serves as a heuristic 
input to line segmentation realized by a curve tracing algorithm which 
operates on edge image, followed by augmenting information from 
intensity image.  Once the lines are segmented, this information feeds to the 
ellipse extraction step.  For ellipse segmentation, intensity image is 
morphologically processed to eliminate background noise, followed by 
elimination of BB-s and lines from the information obtained in prior steps.  
The resulting image consists of only ellipse segments.  A fast variation of 
Hough transform is used to rectify the full ellipse from the segments. 
Results:  The fiducial algorithm identified all the features (BBs, lines and 
ellipses) visible to human eye in all ten clinical images.  Next the accuracy 
of fiducial segmentation was assessed numerically by feeding the results to 
the pose recovery algorithm of [1].  The fiducial was moved on an accurate 
mechanical platform (as ground truth) while the C-arm was stationary.  We 
reconstructed the relative poses with an accuracy of 1.2 mm in translation 
and 0.3 degrees in rotational based on the segmented fiducials.  
Conclusions:  The algorithm makes effective use of a-priori knowledge 
and combines the techniques of morphological segmentation, curve tracing, 
and Hough transform, resulting in a novel curve segmentation strategy. 
References: 
[1] Jain et al, Med Phys 32(10):3185-98 
[2] Zhang et al, Phys Med Biol 49:  335–345 
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Purpose:  One limitation of current computer-aided detection (CAD) of 
polyps in CT colonography is a relatively large number of false positives.  
Rectal tubes are a common source of false positives and may distract the 
reader from less common polyps in the rectum.  Our purpose was to 
develop a three-dimensional massive-training artificial neural network (3D 
MTANN) for reduction of false positives due to rectal tubes generated by a 
CAD scheme. Material and Methods:  Our database consisted of CT 
colonography of 73 patients, scanned in both supine and prone positions.  
Fifteen patients had 28 polyps (15 polyps:  5-9 mm; 13 polyps:  10-25 
mm).  These cases were subjected to our previously reported CAD scheme 
that included shape-based detection of polyps and reduction of false 
positives with a Bayesian neural network.  With this scheme, 96.4% 
(27/28) by-polyp sensitivity with 3.1 (224/73) false positives per patient 
was achieved.  To eliminate false-positive rectal tubes, we developed a 3D 
MTANN that was trained to enhance polyps and suppress rectal tubes. 
Results:  In the output volumes of the trained 3D MTANN, various polyps 
were represented by distributions of bright voxels, whereas rectal tubes 
appeared as darker voxels.  The 3D MTANN removed all 20 false-positive 
rectal tubes produced by our original CAD scheme without removing any 
true positives.  To evaluate the overall performance, we applied the 3D 
MTANN to the entire database containing 27 polyps (true positives) and 
224 non-polyps (false positives).  The 3D MTANN eliminated 33% 
(73/224) of non-polyps without removal of any true positives in an 
independent test.Conclusion:  The 3D MTANN was able to improve the 
false-positive rate of our original CAD scheme from 3.1 to 2.1 false 
positives per patient, while an original by-polyp sensitivity of 96.4% was 
maintained.  Conflict of Interest:  HY, SGA:  shareholders, R2 
Technology, Inc. 
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ABSTRACT

There has been a pressing clinical need for adaptive intra-
operative dosimetry in the delivery of prostate brachytherapy
implants. The missing prerequisite is the robust matching of
the seeds across multiple C-arm images. This is further ag-
gravated since seeds are invariably hidden in each image. We
present a solution to recover these hidden seeds in this pa-
per. A network flow formulation of the problem is proposed,
where the desired solution is obtained (in polynomial time)
by computing the flow with minimum cost. Phantom ex-
periments show that using four X-ray images, on an average
99.8% of the seeds are recovered correctly, while simulations
indicate that our algorithm is robust to segmentation errors of
up to 1 mm and hidden seed rate of at least 8%. The results
show strong feasibility and clinical data collection is currently
underway.

1. MOTIVATION AND BACKGROUND

With an approximate annual incidence of 220,000 new cases
and 33,000 deaths, prostate cancer continues to be the most
common cancer in men in the United States. The defini-
tive treatment modality for low risk prostate cancer is per-
manent brachytherapy, which is performed on approximately
40,000 patients each year. In this treatment a large number
of small (∼ 1x5 mm) radioactive capsules are implanted into
the prostate to kill the cancer by emitting radiation. Accord-
ing to a comprehensive review by the American Brachyther-
apy Society [1], the preplanned technique used for permanent
prostate brachytherapy has limitations that may be overcome
by intraoperative planning. However, the report continues,
the major current limitation of intraoperative planning is the
inability to localize the seeds in relation to the prostate.

Brachytherapy is typically performed transperineally un-
der real-time transrectal ultrasound (TRUS) guidance and C-
arm fluoroscopy is often used for gross visual observation
of the implant. TRUS usually provides adequate imaging of
soft tissue anatomy, but it fails to visualize implanted seeds,
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while C-arm fluoroscopy can visualize seeds, but not soft tis-
sues. By reconstructing the implanted seeds from C-arm flu-
oroscopy and registering them to ultrasound, intra-operative
dosimetry becomes possible.

3D coordinates of the implanted seeds can be calculated
by resolving the correspondence of seeds across multiple X-
ray images. Five major obstacles need to be overcome: (a)
C-arm calibration; (b) C-arm pose tracking; (c) Seed segmen-
tation; (d) Seed matching and reconstruction; and (e) Regis-
tration between C-arm and TRUS. While adequate techniques
are available for most of these problems [2] and several groups
have published results supporting C-arm fluoroscopy for intra-
operative dosimetry [3], this technique has yet to become a
standard of care in hospitals. The last technological barrier
appears to be robust matching and reconstruction of seeds
across multiple C-arm images. This problem is still unsolved
because implants are usually dense and all the seeds are hardly
ever visible in any one image. Even in the case of hand seg-
mentation, perfectly overlapping seeds cannot be segmented
(∼ 2−6%). This phenomenon is often referred to as the issue
of ”hidden seeds” and is the focus of this paper.

Fig. 1. Example of a hidden seed not detectable by the human
eye (right) matching to two distinct seeds (left).

Many contemporary works have made a simplifying as-
sumption that all the seeds are visible, which makes these al-
gorithms infeasible for clinical use. Among previous works,
Fast-CARS was extended to incorporate hidden seeds, but the
new algorithm reconstructed a greater number of seeds than
were actually present [4]. Another variant was proposed [5]
by ordering the seeds using the epipolar constraints. Unfor-
tunately, the algorithm required co-planar images (co-linear
X-ray sources) and could not reconstruct undetected seeds if
they existed in the same search restriction band and did not
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extend to multiple images. An intensity-based method using
tomosynthesis [6] and using Hough trajectories [7] has also
been proposed. However they require an unfeasibly large
number of images to achieve a stable reconstruction, yet do
not offer accuracies better than 1mm. Another technique [8]
optimized on seed positions and camera parameters, by gen-
erating simulated images and iterating them until they match
the observed images. This optimization method is prone to
fall into local minima and was tested only on clean simulated
images. Significant works as they are, the problem merits fur-
ther research to produce a clinically viable solution.

We have previously proposed matching and reconstruc-
tion of brachytherapy seeds using the Hungarian algorithm
(MARSHAL) [9]. In this paper, we extend MARSHAL to
also tackle the hidden seed problem.

2. METHODS AND MATERIALS

We assume that the seeds are 3D points and convert the seed-
matching problem to a network-flow-based combinatorial glo-
bal optimization. In this formulation, any correspondence of
the seeds is represented by an appropriate flow through the
network. The goal is to find the flow with the minimum cost.
In the case with no hidden seeds, two images do not have a
unique solution, while using three or more images makes the
problem NP-hard [9]. Since the case with hidden seeds is a
generalization of the earlier problem, it is also NP-hard. This
proves that a globally optimal polynomial time algorithm is
not possible.

In contrast to the previously proposed heuristic method-
ologies, MARSHAL solves the problem in a more mathemati-
cally rigorous framework of combinatorial optimization. This
formal approach allows better control of the behavior of the
algorithm, as well as consideration of seed groups as a whole
(global optimization) instead of analyzing seed groups with
heuristic rules (local optimization).

A Network-flow-based Formulation: Let N be the number
of seeds inserted and N1, N2, and N3 be the number of seeds
actually segmented in the acquired C-arm images I1, I2, and
I3. Let sij be the position of the ith seed in the jth image.
We construct a directed network as shown in Fig 2.

Sets A, B, C, and D, each containing N1, N2, N3, and N1,
respectively, represent images I1, I2, I3, and I1, respectively.
There are no edges between nodes of the same set, but there
are directed edges (links) connecting every node in set A (left)
to set B, set B to set C, and set C to set A (right). There are
also links from the source S to every node in set A (left), and
similarly from set A (right) to the sink T. A flow of value
N originates at S and ends at T. Because any of the sets can
contain fewer than N nodes, each link from S to A or from
A to T must allow for a flow greater than 1. A flow of 2 at a
node implies that this seed is a hidden seed. To enforce the
constraint that each seed in image 2 & 3 is chosen at least

once but not more than twice, we add dummy internal links.
Thus, we allow a maximum/minimum flow of 2/1 through
each of the internal links and through nodes connected to the
source and sink. The links connecting the sets allow for a
maximum/minimum flow of 1/0.

Set A
(Image1)

Set C
(Image3)

Set B
(Image2)

Set A
(Image1)

Source
(S)

Sink
(T)

Fig. 2. The flow network used to solve the matching problem.

The problem now reduces to efficiently computing a flow
of N . To determine the optimal solution, we need to assign
a cost Cij to the link connecting seed si1 to seed sj2. Cij

represents the likelihood of seed si1 matching seed sj2, with
the cost being 0 if they match perfectly and ∞ (infinity) if
they do not match at all, with extensive discussions available
[9]. Any feasible flow in the network has a net cost of

∑ Cifi,
where fi is the flow in link i and Ci is the cost of sending a
unit flow along that link. Thus the seed-matching problem is
reduced to finding the flow with minimum cost.

The minimum-cost flow can be computed using many poly-
nomial and pseudo-polynomial algorithms [10]. We imple-
mented the cycle cancelling algorithm to compute min-cost
flow, which starts with a feasible flow and then searches for
negative cost cycles in the residual network and pushing a
flow along the negative cycle. This is iterated until there is
no negative cost cycle detected, at which point the minimum
cost flow has been computed. Negative cost cycles can easily
be computed using the Bellman-Ford algorithm, which runs
in O(Edges ∗ V ertices) time. Thus the run-time for the
min-cost flow evaluation is O(cost of the initial f low) ×
O(Edges∗V ertices), which will be pseudo-polynomial. Al-
though there are strongly polynomial time algorithms avail-
able, the cycle-cancelling algorithm proves to be sufficiently
fast.

Overview of the Algorithm: Extended MARSHAL is illus-
trated in Fig 3. Since the problem is NP-hard the network is
not able to constrain the hidden seeds in image 1. Neverthe-
less, hidden seeds in image 2 & 3 are very well constrained.
Thus the min-cost flow nearly solves the problem, except for a
few cases which exhibit some ambiguity. These cases usually
incarnate themselves as self-consistent complete subsets of 2-
5 seeds. Each of these subsets can be independently solved
using an extremely fast brute-force type of algorithm.

In the case that the size of any subset is large, the subset
can be resolved by constructing a miniature network and solv-
ing for the min-cost flow. It is unusual to encounter small sub-
sets which have hidden seeds in all three images, and hence
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Completed
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seed subsets
Yes

No

Yes
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remains

Brute force matching

Remove single

Solve for min−cost flow

No

Generate ’complete’ seed−subsets

Fig. 3. The flowchart for extended MARSHAL.

these subsets can be resolved correctly by switching the order
of the images. In the rare case that all three images in the
subset have hidden seeds, then a choice of set A can be made
arbitrarily and the network solved. Seeds solved as hidden in
sets B/C can then be replicated and used as the outer set and
the network solved again.

The robustness of the reconstruction can be significantly
improved by taking another X-ray image, and thus we ex-
tend the algorithm to work with any number of images. The
problem is well conditioned due to the epipolar constraints, so
when four images are available, three images can be chosen
as the main images, while one can be chosen as an assisting
image (one with the most number of hidden seeds) affecting
only the costs in the main network. This approach can be ex-
tended to any number of images. Thus extended MARSHAL
always recovers the hidden seeds and resolves the correspon-
dences in polynomial time (typically close to O(N3) [9]).

3. RESULTS AND DISCUSSION

Simulations: Data was generated to simulate a 55 cc prostate
with a seed density of 2.0 seeds/cc. The algorithm was run
on three different datasets using combinations of four images,
varying segmentation error from 0 − 2 mm in increments of
0.25 mm. To test the sensitivity to the number of hidden
seeds, the algorithm was also run varying the hidden seed per-
centage from 0− 20% in increments of 2%. Averaged results
are shown in Fig 4.
Phantom experiments: Experiments were conducted on a
precisely fabricated acetol seed phantom. The FTRAC fidu-
cial [2] was used to track the C-arm, and was attached to the
phantom (Fig 5). The phantom comprises of twelve 5 mm

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

50

60

70

80

90

100

Segmentation Error (mm)

M
at

ch
in

g 
R

at
e 

(%
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
is

m
at

ch
ed

 R
ec

on
st

ru
ct

io
n 

E
rr

or
 (

m
m

)Sensitivity to Segmentation Error

x Matching Rate

o Mismatched Reconstruction
  Error

(a)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Hidden Seed Percentage (%)

M
at

ch
in

g 
R

at
e 

(%
)

Sensitivity to Hidden Seed Percentage

(b)

Fig. 4. (a) Sensitivity to segmentation error. (b) Sensitivity to
hidden seed percentage.

thick slabs, each having one hundred holes with 5 mm spac-
ing. Known implant constellations were created, with the
number of seeds ranging from 40 to 100 in increments of 15,
while keeping the seed density at 1.56 seeds/cc.

For a given constellation, 6 images within a 20o cone
around the AP-axis were taken using an uncalibrated Philips
Integris V3000 and dewarped using the pin-cushion test. Ac-
curate ground truth for matching was computed from the known
3D seed locations. Matching was achieved with three and four
images. All seeds closer than 1.2 mm were called hidden.
Averaged results are displayed in Table 1.

(a) (b)

Fig. 5. (a) An image of the phantom attached to the FTRAC
fiducial. (b) A typical X-ray image of the combination.

Discussion: The simulation results show that the algorithm
can nearly perfectly match all the seeds even with segmenta-
tion errors up to 1 mm. While increasing the segmentation
error further decreases the matching percentage, at 2 mm er-
ror, the matching rate is still over 90%, with the reconstruction
error of the mismatched seeds remaining below 2 mm. When
the percentage of hidden seeds is varied, the algorithm can
robustly match when the hidden seed percentage is at least
8%. Because the datasets for this case were generated by cre-
ating a threshold for closeness based only on the hidden per-
centage, significant error was introduced as the percentage in-
creased, since the threshold became unrealistically large, cre-
ating much lower matching percentages than would normally
be seen.

For the phantom data, using three images gives a good
matching rate, but mismatched seeds reconstruct with a high
error. Using four images gives substantially better results,
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Number of Seeds
3 Images 4 Images

40 55 70 85 100 40 55 70 85 100

Matching

M
at

ch

98.3 100 99.9 98.2 98.0 100 100 100 99.9 99.5
Rate (%)

Reconstruction
0.64 0.50 0.67 0.71 0.77 0.64 0.39 0.63 0.76 0.82

Error (mean)
Reconstruction

0.27 0.27 0.31 0.26 0.34 0.25 0.21 0.29 0.27 0.28
Error (STD)

Reconstruction

M
is

m
at

ch 7.46 - 0.80 12.47 4.99 - - - 14.13 1.73
Error (mean)

Reconstruction
9.02 - 0.80 17.34 8.38 - - - 14.13 1.89

Error (worst)
Reconstruction

A
ll 0.52 0.32 0.40 0.54 0.53 0.32 0.30 0.38 0.34 0.41

Error (relative)

Table 1. Performance on phantom data.

with nearly perfect matching and a mostly low reconstruc-
tion error for mismatched seeds. Since it is readily feasible to
obtain a fourth image in a clinical setting, our implementation
is extremely viable for intra-operative dosimetry.

Conclusions and Future Work: In contrast to other pro-
posed methods, we have formalized the seed matching prob-
lem and have extended a previously proposed polynomial time
algorithm (MARSHAL) to resolve hidden seeds. A MAT-
LAB 7 implementation runs in under 20 s in a typical implant
using any number of images. Using 4 images, it matched over
99.8% of the seeds. Simulations indicate that MARSHAL is
robust to various parameters. It can reconstruct an implant
when three or more images are used, with a robustness, pre-
cision, and speed that promises to be sufficient to support in-
traoperative dosimetry in prostate brachytherapy.

MARSHAL is being combinatorially improved to increase
the matching rate when only three images are used and also to
reject spuriously segmented seeds. Moreover, other sources
of information like seed orientation are being added to the
cost metric to increase robustness. Clinical data is also being
collected for further analysis.
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ABSTRACT 

 
Intra-operative quality assurance and dosimetry optimization in prostate brachytherapy critically depends on the ability 
of discerning the locations of implanted seeds. Various methods exist for seed matching and reconstruction from 
multiple segmented C-arm images. Unfortunately, using three or more images makes the problem NP-hard, i.e. no 
polynomial-time algorithm can provably compute the complete matching. Typically, a statistical analysis of performance 
is considered sufficient. Hence it is of utmost importance to exploit all the available information in order to minimize the 
matching and reconstruction errors. Current algorithms use only the information about seed centers, disregarding the 
information about the orientations and length of seeds. While the latter has little dosimetric impact, it can positively 
contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become critical 
information when hidden and spuriously segmented seeds need to be matched, where reliable and generic methods are 
not yet available. Expecting orientation information to be useful in reconstructing large and dense implants, we have 
developed a method which incorporates seed orientation information into our previously proposed reconstruction 
algorithm (MARSHAL). Simulation study shows that under normal segmentation errors, when considering seed 
orientations, implants of 80 to 140 seeds with the density of 2.0- 3.0 seeds/cc give an average matching rate >97% using 
three-image matching. It is higher than the matching rate of about 96% when considering only seed positions. This 
means that the information of seed orientations appears to be a valuable additive to fluoroscopy-based brachytherapy 
implant reconstruction. 
 
Keywords: Prostate brachytherapy, implant reconstruction, seed matching, C-arm fluoroscopy 
 

1. INTRODUCTION 
 

With an approximate annual incidence of 220,000 new cases and 33,000 deaths, prostate cancer continues to be the most 
common cancer in men in the United States1. For several decades, the definitive treatment for low risk prostate cancer 
was radical prostatectomy or external beam radiation therapy2, but low dose rate permanent seed brachytherapy (shortly 
brachytherapy) today can achieve virtually equivalent outcomes3,4. The success of brachytherapy (i.e., maximizing its 
curative force while minimizing its co-morbidity) mainly depends on our ability to tailor the therapeutic dose to the 
patient’s individual anatomy. In contemporary practice, however, implant planning is based on idealistic preplanned seed 
patterns. 15 years of clinical practice has clearly demonstrated that it is not achievable in the actual human body. 
According to a comprehensive review by the American Brachytherapy Society5, the preplanned technique used for 
permanent prostate brachytherapy has limitations that may be overcome by intraoperative planning. At the same time, 
the major current limitation of intraoperative planning is the inability to localize the seeds relative to the prostate. There 
are excellent algorithmic and computational tools available today to optimize a brachytherapy treatment plan 
intraoperatively, thereby allowing for improved dose coverage. These methods, however, critically require that the exact 
3D locations of the implanted seeds are precisely known with respect to the patient’s anatomy. 
 
Prostate brachytherapy is almost exclusively performed under transrectal ultrasound imaging (TRUS) guidance. While 
TRUS provides adequate imaging of the soft tissue anatomy, it does not allow for robust localization of the implanted 
brachytherapy seeds. Many researchers have tried to segment the seeds from TRUS images by linking seeds with 
spacers6, using X-rays to initialize segmentation7, using vibro-accoustography8 or transurethral ultrasound9 as a new 
imaging modality, or segmenting them directly10. But even when meticulously hand-segmented, up to 25% of the seeds 
*yuzhou@notes.cc.sunysb.edu; phone (631) 632-8322; fax (631) 632-8544 



may remain hidden in ultrasound11. This necessitates the use of some other imaging method in intraoperative seed 
localization. 
 
The application of C-arm fluoroscopy in brachytherapy originates when it was first used as a solo guidance modality12. 
Shortly after TRUS emerged as a primary image guidance modality, fluoroscopy became a secondary tool for gross 
visual observation. Mobile C-arms are ubiquitous in contemporary prostate brachytherapy, with approximately 60% of 
the practitioners using it for qualitative implant analysis in the operating room13. It is considered as the gold standard for 
intraoperative visualization of brachytherapy seeds. While several groups have published protocols and clinical 
outcomes favorably supporting C-arm fluoroscopy for intraoperative dosimetric analysis10,14–22, this technique is yet to 
become a standard of care across hospitals. 
 
The ability to reconstruct and register the implanted seeds, which are visible in fluoroscopy, to soft tissue anatomy, 
which is visible in TRUS, intraoperatively would allow us to make immediate provisions for dosimetric deviations from 
the optimal implant plan. At the same time, quantitative use of fluoroscopy for dosimetric analysis has been hampered 
by a series of unresolved technical problems. The five major obstacles toward intraoperative dosimetry are: (a) C-arm 
distortion correction and calibration, (b) C-arm pose tracking, (c) seed segmentation, (d) seed matching and 
reconstruction, and (e) registration of C-arm to TRUS images. 
 
Significant efforts have been made toward computational fluoroscopy guidance in general surgery, developing various 
tools for distortion correction and calibration23,24. However, C-arms available in most hospitals do not have encoded 
rotational joints, so one never knows where the fluoro shots are coming from relative to one another. We have addressed 
this issue by designing a fluoroscope tracking (hence-forth FTRAC) fiducial, which is a radiographic fiducial system 
creating a unique projection image from each direction25. Various methods partially dealing with C-arm calibration in 
brachytherapy have also been proposed26–28, while some others have suggested that it is redundant29. 
 
Attempts have also been made to relate fluoroscopic images to soft tissue anatomy10,17,30–34. Nevertheless, further 
research is merited since existing methods are susceptible to various kinds of errors. We addressed this issue by the use 
of the FTRAC fiducial25. It is capable of not only tracking the C-arm, but also registering the C-arm to TRUS by a 
predetermined placement. 
 
Methods are available for automatic seed segmentation15,35–38. 3D coordinates of the implanted seeds can now be 
calculated from multiple X-ray images upon resolving the correspondence of seeds. Formalization of the seed-matching 
problem results in a high complexity search space of the order 10150 and 10300, from two and three fluoroscopic images, 
respectively. Hence previously proposed seed-matching approaches have predominantly been heuristic explorations of 
the search space, with no theoretical assurance on the accuracy of the answer. The early attempts toward seed matching 
used three coplanar images (coplanar images are those where the implant and the three X-ray sources are approximately 
in the same plane)39-41. The images were divided into variable width bands, formed by comparing coordinates along the 
rotation axis. Furthermore, in order to make the bands, it was assumed that the seeds are near the iso-center of the C-arm 
or at least have similar magnifications in all the images. These methods are prone to calibration errors and become 
ineffective as the number of seeds increases. These ideas were further extended by accommodating for patients’ 
motion42, and yet all the seeds could not be reliably reconstructed. Further geometrical constraints were imposed by 
assuming that some of the seeds are in a straight line43 or on quadratic curves44, which is generally not true due to seed 
migration. 
 
The first step toward mathematical formalization came with the construction of a cost matrix45, where exhaustive 
matching gave the lowest cost solution. Though it eliminated extraneous assumptions, it required impractical 
computational resources. A greedy randomized algorithm, tested with various cost metrics, was suggested to reduce the 
runtime46. This method gives a different output for each run and is typically iterated a few hundred times, choosing the 
sequentially lowest cost. Though this method might provide an answer close to the correct match, its randomization does 
not make any claim on the number of iterations required for the final answer. Fast-CARS is another variant47, which 
significantly improved the computational complexity, where for each cost matrix an exhaustive match can be performed 
to obtain the best possible matches. It reduced the run-time from O((N!)2) to O((A!)2), where A is the average number of 
seeds in the band. Though it made the search faster, it still ran in exponential time. For example, if A=10 then the 
number of computations would still be as high as O(1014). 



 
Independently, a set of heuristic rules16, which attempted to reduce misclassifications, were suggested for seed matching. 
Simulated annealing36 was proposed as an alternate technique to reach the global minimum. Another technique28 was 
proposed, which optimizes seed positions and camera parameters by generating simulated images and iterating them 
until they match the observed images. These optimization methods are prone to local minima, and may not be able to 
recover from them. A statistical simulation of seed reconstruction uncertainty was conducted48, but did not address the 
problem of seed matching. CT and MRI based techniques49,50 were also proposed, but cannot be used intraoperatively, 
and have poor resolution in the axial direction.  
 
The matching problem is also prevalent in the computer vision community, where 2D points are tracked and 
reconstructed to compute motion. Researchers have tried to use noniterative greedy algorithms51, also incorporate 
spurious and hidden points52,53. Occlusion itself has also been a known problem54. These algorithms were optimized for a 
dense set of moving points, while specialized algorithms were used for sparse matchings55,56, which can also be used in 
pattern recognition across images57. These algorithms are usually catered to achieve real-time performance, as compared 
to a complete matching, and hence do not appear to be appropriate in a medical application.  
 
In our recent work59, a new theoretical framework for seed matching has been introduced. The framework tackles issues 
of optimality, and presents a practical algorithm. Moreover, the framework guarantees a polynomial runtime of O(N3) on 
the algorithm, an improvement over previous methods. Seed matching and reconstruction is done by using the 
Hungarian algorithm (MARSHAL). Simulations and phantom experiments show that MARSHAL is not sensitive to 
image separation, seed density, the number of seeds, and C-arm calibration, and also robust enough to segmentation, C-
arm pose, and distortion. It can reconstruct an implant when three or more images are used, with enough robustness, 
precision, and speed to support intraoperative dosimetry in prostate brachytherapy. It can also be used as a general 
purpose correspondence algorithm in many synergistic problems. 
 
In seed matching and reconstruction, it is of utmost importance to exploit all the available information in order to 
minimize the matching and reconstruction errors. However, current algorithms, including MARSHAL, use only the 
information about seed centers, disregarding the information about the orientations and length of seeds. While the latter 
has little dosimetric impact, it can positively contribute to improving seed matching rate and 3D implant reconstruction 
accuracy. It can also become critical information when hidden and spuriously segmented seeds need to be matched, 
where reliable and generic methods are not yet available. Expecting orientation information to be useful in 
reconstructing large and dense implants, in this paper we propose a method which incorporates seed orientation 
information into MARSHAL.  
 
This paper is organized in the following way. In Sec. 2, we will describe the proposed method which combines the 
information of seed orientations with that of seed positions. In Sec. 3, we will discuss the simulation study and the 
results. In Sec. 4, we will conclude our current work and discuss the future work. 

 
2. METHODOLOGY 

 
In this paper we further improve the matching rate of MARSHAL by including the information of seed orientations into 
the cost matrix. We convert the seed-matching problem to network-flow-based combinatorial optimization. In this 
formulation, any correspondence of the seeds is represented by an appropriate flow through the network. This formal 
approach allows better control of the behavior of the algorithm, considering the set of seeds in global optimization 
instead of local optimization as heuristic rules do. 
 
2.1 A generic network-flow-based formulation 
A network flow formulation is created for seed matching problem, where any flow in the network would represent a 
matching, and the desired solution is the flow with minimum cost. Let N seeds be implanted, and C-arm images I1, I2 be 
acquired. Let sij be the position of the ith seed in jth image. We construct a directed network as shown in Fig. 1. Sets A 
and B, each with N nodes, represent the two images I1 and I2. While there are no edges within each set, directed edges 
run from all vertices in set A to all vertices in set B. There are N edges at source S, each edge connecting to a node in A. 
Similarly each node in B is connected to sink T. The flow originates at S and ends at T, with each edge allowing a flow 
of value 1 or 0, where 1 means that the edge is selected and 0 means that it is not. The problem is to find a flow in the 



network that can achieve a total flow of value N. To have a net flow of N, each edge connecting to either the source or 
the sink has to support a flow 1. Now by the conservation of flow at each node, every node in set A will have to dispatch 
a unit flow to some node in set B. Moreover, each node in set B can accept only a unit flow, because any extra flow 
cannot be passed on to T, and any deficiency would mean that T does not have a total flow of N units. The set of all 
edges with nonzero flow provide a feasible matching. 

 
Figure 1: Network flow formulation for the seed matching problem  Figure 2: Two-image seed matching as the assignment problem 
 
Under no constraint, the network flow problem has N! solutions, corresponding to N! feasible flows. To obtain the 
optimal solution, the edge connecting seed si1 to seed sj2 is assigned a cost Cij. The cost Cij represents the likelihood of 
seed si1 matching seed sj2, with the cost being 0 if they match perfectly and ∞ (infinity) if they do not match at all. Any 

feasible flow has a net cost associated with it, the value of which is , where f∑∑
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the cost of sending a unit flow along that link. Thus the seed matching problem is reduced to finding the flow with 
minimum cost, and can be written as  
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The network flow in Fig. 1 can easily be extended to multi-image cases by adding more sets of nodes and directed edges 
between S and T. 
 
2.2 Seed matching for two and three images 
When all the seed locations in the two images are known, the minimum-cost maximum-flow formulation reduces further 
to the specific problem of minimum-weight matching in bipartite graphs, also known as the assignment problem (Fig. 2). 
The problem is to find a minimum weight subset of edges such that all the vertices are covered exactly once. The 
assignment problem is solved in O(N3) runtime by using the Hungarian algorithm60–62. Since the algorithm is well-
known, we just give an outline here. The N×N cost matrix C is constructed. The objective is to choose exactly one 
element from each row and column such that the sum of the elements has the lowest value. Thus, an equivalent matrix 
having at least one zero in each row and column is obtained by subsequent subtractions using the smallest element in 
each row and column. This matrix is used to find a selection of zeros such that each row and column has exactly one 
zero. If it exists, then it provides the minimum-cost matching. If it does not exist, a line covering procedure is used to 
adjust the matrix and generate zeros in useful locations. The locations of all zeros provide the minimum-weight 
matching. Thus the Hungarian algorithm provides the matching with the lowest possible cost. 
 
Our previous work has proved that a robust seed matching and reconstruction requires at least three images59. In the 
three-image case, the network flow problem becomes a tripartite matching problem. We proposed a practical solution for 
matching and reconstruction of brachytherapy seeds using the Hungarian algorithm (MARSHAL)59. MARSHAL 
projects the original tripartite problem into three distinct bipartite problems by the appropriate projection of the costs. 
Each bipartite problem can be solved in O(N3) runtime. The solutions of the bipartite matchings are then combined to 
obtain a solution to the original tripartite problem. A detailed description of MARSHAL algorithm and its theoretical 
foundation can be found in Ref. 59. A discussion of applying MARSHAL to seed matching from four or more images 
can also be found there. To avoid redundancy, here we only list the flowchart for MARSHAL (Fig. 3).  
 



2.3 Seed reconstruction 
In principle, given three images, the 3D location of a seed can 
be computed by first defining the equation of the three straight 
lines that join each projection with its respective X-ray source, 
and then calculating the intersection point of the three straight 
lines. However, due to various errors, these straight lines never 
intersect, forcing us to compute a symbolic 3D intersection 
point. The symbolic intersection is typically defined as the 
global minimum of an error function. We have proposed a 
simple and quick method that minimizes the L2 norm of 
Euclidian distance from the intersection point to the lines59. 
Here we assume that for a point P in space, there are m 
corresponding straight lines (Fig. 4). Line i (li) joins the 
projection of P in image i, pi, with its X-ray source. The unit 
directional vector of line i is (ai ,bi ,ci). Then the 3D location of 
the symbolic intersection point can be calculated as 
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Figure 3: The flowchart of MARSHAL
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In Fig. 4, di denote the distance from the reconstructed point P 
to line i. 
 
In principle, 3D seed orientations can also be reconstructed. 
Given three images, the 3D orientation of a seed can be 
computed by first defining the three planes that join each 
projection with its respective X-ray source, and then calculating 
the intersection line of the three planes. However, due to 
various errors, these planes never intersect into one straight line 
in space. So a symbolic intersection becomes necessary. Here 
we use a simple and quick method to do it (Fig. 5). Here we 
assume that for a seed S in space, plane i (PLi) is defined by the 
projection of S in image i, si, with its X-ray source. Since from 
each pair of planes we can obtain an intersection line, from 
three planes we can obtain three independent intersection lines. 
Then we consider the average of the three unit directional 
vector as the reconstructed 3D orientation of the seed. 
 
2.4 Cost metrics 
The above discussion shows that a robust seed matching algorithm heavily depends on the performance of the cost 
metric which constructs the cost matrix in MARSHAL. The seed matching from three images has been reduced to a 
sequence of bipartite matching. For each bipartite matching problem, we construct a cost matrix in the following way. 
Given three images, we choose two principal images for this bipartite matching problem. For each pair of seeds in these 
two images, we reconstruct a 3D seed. Then we project this reconstructed 3D seed to the third image, and find the 
closest seed projection on the image to this projection based on the cost metric. We reconstruct a 3D seed from those 
three seed projections. Then we project it back to the three images and calculate the average metric value between each 
projected seed and the observed seed in each image. 
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Figure 4: Seed position reconstruction from three images Figure 5: Seed orientation reconstruction from three images 

 
In our previous work, only the positions of seed centers were used to define the cost metric. However, we believe it is of 
utmost importance to exploit all the available information in order to minimize the matching and reconstruction errors. 
Although the information about the orientations and length of seeds may have less significant dosimetric impact, it can 
positively contribute to improving seed matching rate and 3D implant reconstruction accuracy. It can also become 
critical information when hidden and spuriously segmented seeds need to be matched, where reliable and generic 
methods are not yet available. In the following, besides the original cost metric used by MARSHAL (M1), we will 
introduce several new cost metrics (M2- M7) which integrate seed orientation information. Extensive simulation study 
has been performed to compare the performance among different cost metrics. The results will be reported in Sec.4. Fig. 
6 illustrates the seven metrics tested in this study. 
 
2.4.1 M1 – cost metric without considering seed orientation 
The original MARSHAL uses projection error (PE) to define its cost matrix. PE is obtained by projecting the 3D 
reconstructed point back onto each image and calculating the mean distance between the projected location and the 
observed location of the seed. In the original MARSHAL, as seen in Fig. 6, the cost metric M1 is defined as: 

cdM =1 , (3) 
where, sp and so denote the projected seed and the observed seed respectively, ap and bp are the end points of sp, cp the 
center of sp, ao and bo the end points of so, co the center of so, and dc is the center to center distance between the projected 
seed and the observed seed. 
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Figure 6: Cost metrics M1-M7

 



Another cost metric (probably the most popular choice) is reconstruction accuracy (RA). RA is obtained by calculating 
the average distance from the symbolic intersection to each straight line (Fig. 4). It has been proved that PE performs 
better than RA59.  
 
2.4.2 M2 – M7 Cost metrics considering 2D seed orientation 
Combining the information of seed orientations with that of seed positions, we have created a series of cost metrics 
shown in Fig. 6.  
 
M2 is defined as  

sobpsoapc dddM −− ++=2 , (4) 
where dap-so denotes the distance from ap to so, and dbp-so denotes the distance from bp to so. 
 
M3 is defined as  

bcacc dddM ++=3 , (5) 
where dac denotes the distance from ap to co, and dbc denotes the distance from bp to co. 
 
M4 is defined as  

sobpsoapbcacc dddddM −− ++++=4 . (6) 
 
M5 is defined as  

35
sobpsoapcy

cx

ddd
dM −− ++

+= , (7) 

where dcx is the component of dc along so, and dcy is the component of dc perpendicular to so. 
 
M6 is defined as  

bac dddM ++=6 , (8) 
where da denotes the distance from ap to ao, and db denotes the distance from bp to bo. 
 
M7 is defined as  

ba ddM +=7 . (9) 
 
From Fig. 6 and Eq. 4-9, we can see that M2-M6 contain not only the center-to-center distance but also the distances 
related to end points of the seeds. Since the end points define the orientations of the seeds, by including end points into 
the cost metrics, we have actually incorporated the seed orientation information into the metrics. 
 
2.4.3 M8- cost metric using threshold for 3D seed orientation 
In this case, we define a quantity similar to the RA, the reconstruction accuracy for 3D orientation (RAO). RAO is 
obtained by calculating the average angular difference from the reconstructed 3D seed orientation to each intersection 
line obtained from each pair of planes (Fig. 5). In general, for actually matched seeds, the orientations of the three 
intersection lines are considered not very different from each other. This means that the RAO for actually matched seeds 
should be small. By setting a threshold for RAO, we define the cost metric M8 as 

⎩
⎨
⎧

>∞
≤

=
thresholdRAO
thresholdRAOd

M c
8

. (10) 

In this way, we eliminate some potential mismatches early at the stage of constructing cost matrices. 
 
Moreover, we notice that for actually matched seeds, the RA and RAO should be small at the same time. Based on this 
observation, we propose a simple way to find the optimal threshold for RAO. In order to find the optimal threshold, we 
choose a range of threshold angles. For each threshold angle in the range, we run MARSHAL with M8 as the cost metric, 
and calculate the total RA for the resulting matching. Then we pick the threshold angle with the smallest total RA as the 
optimal threshold. 
 



3. SIMULATION RESULTS AND DISCUSSION 
 

Extensive simulation study has been done on synthetic images to analyze the performance of MARSHAL under various 
cost metrics. Matlab program was created to model X-ray imaging. Given C-arm parameters and implant details, it 
generated synthetic images and exact locations and orientations of seeds in the images. In this paper we use three images 
to evaluate the correspondences with all the above-mentioned cost metrics. To evaluate the performance on simulated 
data, we compute the percentage of correct matching. We also study the sensitivity of different cost metrics to 
segmentation errors, because seed segmentation from the X-ray images is one of the most important sources of error. 
Here we consider the impact of the segmentation errors in both position and orientation. Random error was modeled 
following uniform distribution. Therefore, a 1 mm position error means that a maximum error of magnitude 1 mm was 
added to the positions of the seeds following the uniform distribution. Similarly, a 1° orientation error means that a 
maximum error of magnitude 1° was added to the orientations of the seeds.  
 
Simulation data sets were generated to simulate different seed densities, prostate volumes and image separation angles. 
Here we focus on large and dense implants. In our simulation study, the seed density varies from 2.0 seeds/cc to 3.0 
seeds/cc, the prostate volume from 40cc to 45cc, and image separation angle from 15° to 20°. So the total number of 
seeds is from 80 to 140. To test the impact of segmentation errors on the cost metrics, we vary the segmentation error in 
position from 0 mm to 1.5 mm, and the segmentation error in orientation from 0° to 30°. The averaged results are 
displayed in Tables 1 and 2. The general trend can be seen in Fig. 7 and 8. When we test the metrics with orientation 
segmentation error, we fix the position segmentation error as 0.75 mm; when we test the metrics with position 
segmentation error, we fix the orientation error as 9°. This is because they are close to the segmentation errors in 
practice.  
 

Orientation segmentation errors Matching rate 
(%) 0° 3° 6° 9° 12° 15° 18° 21° 24° 27° 30° 

Avg. 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% 96.3% M1 STD 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 2.3% 
Avg. 98.4% 98.1% 97.6% 96.2% 93.8% 93.2% 91.8% 91.5% 91.0% 90.3% 90.8% M2 STD 1.8% 1.8% 2.2% 2.7% 3.7% 3.0% 3.8% 3.3% 4.0% 4.3% 4.1% 
Avg. 88.2% 91.5% 93.5% 93.1% 92.4% 92.9% 91.8% 91.8% 92.6% 91.7% 92.0% M3 STD 5.7% 3.7% 4.0% 4.0% 3.1% 3.4% 3.6% 4.1% 3.4% 3.9% 3.7% 
Avg. 96.3% 96.9% 96.4% 95.1% 92.9% 92.8% 90.7% 90.7% 90.6% 89.3% 90.7% M4 STD 2.6% 2.2% 2.5% 3.2% 3.8% 2.8% 3.8% 3.9% 3.1% 4.3% 3.6% 
Avg. 98.1% 98.0% 97.9% 97.1% 95.5% 95.7% 95.1% 94.0% 94.8% 94.0% 94.6% M5 STD 1.8% 1.8% 2.1% 2.1% 3.0% 2.9% 3.0% 3.0% 2.8% 3.6% 3.4% 
Avg. 98.4% 98.2% 98.1% 97.2% 95.4% 94.6% 93.5% 92.2% 93.3% 91.6% 92.8% M6 STD 1.6% 1.8% 1.9% 2.2% 3.0% 2.9% 3.5% 3.7% 3.5% 3.8% 3.5% 
Avg. 98.6% 98.4% 98.0% 96.7% 93.8% 92.5% 90.8% 89.5% 89.7% 87.9% 88.0% M7 STD 1.6% 1.7% 2.0% 2.4% 3.8% 3.2% 4.2% 3.6% 3.9% 4.9% 4.7% 
Avg. 96.5% 96.4% 96.5% 96.6% 96.5% 96.6% 96.6% 96.6% 96.3% 96.4% 96.3% 
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M8 STD 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.3% 2.3% 
Table 1: Matching rate from various cost metrics under different orientation segmentation errors (with a fixed position segmentation 
error of 0.75 mm) 
 
 
 
 
 
 
 
 
 
 
 



Orientation segmentation errors Reconstruction 
error (mm) 0° 3° 6° 9° 12° 15° 18° 21° 24° 27° 30° 

All 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 M1

Mis. 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 
All 0.50 0.50 0.50 0.52 0.55 0.55 0.55 0.59 0.66 0.62 0.65 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.51 0.50 0.51 M2

Mis. 0.50 0.57 0.74 0.98 1.10 1.15 1.17 1.40 1.61 1.43 1.56 
All 0.76 0.59 0.57 0.60 0.54 0.53 0.58 0.55 0.54 0.56 0.56 

Mat. 0.52 0.50 0.50 0.51 0.49 0.49 0.51 0.49 0.49 0.49 0.49 M3

Mis. 1.71 1.24 1.08 1.15 1.06 0.96 1.21 1.12 1.05 1.13 1.10 
All 0.52 0.50 0.51 0.54 0.54 0.54 0.58 0.57 0.62 0.61 0.59 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.49 0.50 M4

Mis. 0.92 0.66 0.87 1.13 1.15 1.12 1.31 1.20 1.58 1.45 1.24 
All 0.50 0.50 0.50 0.50 0.51 0.51 0.52 0.52 0.51 0.53 0.51 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 M5

Mis. 0.63 0.52 0.56 0.66 0.76 0.80 0.88 0.86 0.79 1.00 0.69 
All 0.50 0.50 0.50 0.50 0.51 0.52 0.52 0.55 0.57 0.59 0.55 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.49 M6

Mis. 0.53 0.49 0.50 0.64 0.78 0.92 0.93 1.11 1.11 1.40 1.09 
All 0.50 0.50 0.50 0.51 0.53 0.56 0.56 0.60 0.65 0.70 0.72 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.51 M7

Mis. 0.52 0.48 0.58 0.74 0.91 1.27 1.28 1.30 1.58 1.76 1.94 
All 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Mat. 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
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Mis. 0.65 0.65 0.64 0.64 0.65 0.64 0.64 0.65 0.72 0.65 0.65 
Table 2: Average reconstruction error from various cost metrics under different orientation segmentation errors (with a fixed position 
segmentation error of 0.75 mm). “Mat.” stands for matched seeds, “Mis.” stands for mismatched seeds. 
 

Position segmentation errors (mm) Matching rate 
(%) 0 0.25 0.5 0.75 1.0 1.25 1.5 

Avg. 100.0% 99.5% 98.5% 96.0% 92.5% 86.7% 76.2% M1 STD 0.0% 0.9% 1.7% 2.2% 4.0% 4.9% 6.1% 
Avg. 99.3% 98.8% 98.1% 96.6% 93.6% 87.5% 78.4% M2 STD 0.9% 1.2% 1.9% 2.4% 3.8% 4.9% 7.7% 
Avg. 98.5% 97.4% 95.7% 93.5% 90.2% 83.3% 73.6% M3 STD 1.4% 2.0% 2.4% 3.5% 4.0% 6.6% 7.9% 
Avg. 99.0% 98.5% 97.5% 95.8% 92.5% 87.1% 77.6% M4 STD 1.3% 1.6% 1.7% 3.1% 3.7% 6.0% 7.4% 
Avg. 99.8% 99.4% 98.6% 97.1% 94.2% 89.6% 80.7% M5 STD 0.3% 1.0% 1.6% 2.2% 3.6% 4.7% 6.3% 
Avg. 99.6% 99.0% 98.5% 97.2% 95.1% 90.1% 82.1% M6 STD 0.7% 1.1% 1.6% 2.4% 3.1% 5.2% 6.4% 
Avg. 98.8% 98.6% 97.9% 96.8% 94.8% 90.7% 83.1% M7 STD 1.3% 1.3% 1.9% 2.4% 3.3% 5.2% 6.2% 
Avg. 100.0% 99.5% 98.6% 96.2% 92.9% 88.2% 78.3% 
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M8 STD 0.0% 0.9% 1.5% 2.3% 3.9% 4.9% 5.6% 
Table 3: Matching rate of various cost metrics under different position segmentation errors (with a fixed orientation segmentation 
error of 9°) 
 
 
 
 



Position segmentation errors (mm) Reconstruction 
error (mm) 0 0.25 0.5 0.75 1.0 1.25 1.5 

All 0.00 0.16 0.32 0.50 0.71 1.21 2.01 
Mat. 0.00 0.16 0.32 0.48 0.63 0.84 1.06 M1

Mis. 0.00 0.08 0.38 0.82 1.44 2.94 4.06 
All 0.01 0.17 0.32 0.50 0.72 1.20 2.07 

Mat. 0.00 0.16 0.32 0.48 0.63 0.83 1.07 M2

Mis. 0.14 0.25 0.39 0.80 1.61 3.26 4.33 
All 0.01 0.17 0.34 0.53 0.82 1.48 2.32 

Mat. 0.00 0.16 0.32 0.48 0.66 0.85 1.13 M3

Mis. 0.29 0.45 0.62 1.06 1.85 3.65 4.34 
All 0.01 0.17 0.34 0.51 0.74 1.32 2.09 

Mat. 0.00 0.16 0.32 0.48 0.64 0.84 1.09 M4

Mis. 0.26 0.33 0.73 0.91 1.58 3.45 4.23 
All 0.00 0.16 0.32 0.50 0.69 1.10 1.78 

Mat. 0.00 0.16 0.32 0.48 0.63 0.81 1.04 M5

Mis. 0.04 0.10 0.36 0.77 1.30 2.77 3.63 
All 0.00 0.16 0.32 0.49 0.67 1.07 1.69 

Mat. 0.00 0.16 0.31 0.48 0.63 0.81 1.01 M6

Mis. 0.09 0.20 0.38 0.69 1.22 2.49 3.50 
All 0.01 0.17 0.33 0.50 0.67 1.00 1.58 

Mat. 0.00 0.16 0.32 0.48 0.63 0.80 1.02 M7

Mis. 0.33 0.36 0.56 0.87 1.28 2.19 3.13 
All 0.00 0.16 0.32 0.50 0.70 1.08 1.79 

Mat. 0.00 0.16 0.32 0.48 0.63 0.82 1.05 
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Mis. 0.00 0.07 0.38 0.82 1.43 2.42 3.53 
Table 4: Average reconstruction error from various cost metrics under different position segmentation errors (with a fixed orientation 
segmentation error of 9°). “Mat.” stands for matched seeds, “Mis.” stands for mismatched seeds. 
 
From the tables and figures, we can see two clear trends: 

1. When the position segmentation error increases, the matching rate based on each cost metric decreases 
monotonically. This is because all the cost metrics we discussed depend on the distance between the projected 
seeds and the observed seeds. The increase in position segmentation error will cause the difference between the 
metric values of actually matched seeds and those of actually unmatched seeds decrease. 

2. When the orientation segmentation error increase, the matching rate of the cost metrics considering orientation 
decreases. This is because these cost metrics depend on reasonably accurate 2D orientation information. The 
increase in orientation segmentation error will cause the difference between the metric values of actually 
matched seed and those of actually unmatched seeds decrease. 

 
Moreover, if we use M1 (the cost metric without considering seed orientation) as a criterion, M8 (the cost metric using 
threshold for 3D seed orientation) always give us a matching rate equal to or slightly greater than that of M1. This is 
because M8 is built upon M1 with a threshold. It guarantees that M8 performs at least as well as M1. However, it also 
means that no substantial improvement over M1 can be obtained from M8. The data show that the matching rate of M3 is 
always below that of M1. The matching rate of M4 drops below that of M1 right after the orientation segmentation error 
hits 6°, while its sensitivity to the position segmentation error is about same as M1. Therefore, M3, M4 and M8 are not 
recommended. 
 
The data also show that the matching rates of M2, M5, M6 and M7 are higher than that of M1 when the orientation 
segmentation error is lower than 9°. Among them M5 and M6 are better than M2 and M7. When the orientation 
segmentation error is equal to 9°, M5 and M6 give the matching rates greater than 97% while M2 and M7 are close to M1, 
about 96%. Meanwhile, the standard deviation of the matching rates of M5 and M6 are also slightly smaller than that of 
M1. M5 and M6 also give the best matching rates when the position segmentation error is close to the practice (0.75mm). 
At the same time, the average reconstruction errors of mismatched seeds from M5 and M6 are about same as or slightly 



lower than that of M1 at the segmentation errors of 9° and 0.75mm. Therefore M5 and M6 are the best cost metrics we 
have. They can be used to robustly match and reconstruct seeds under normal segmentation errors. It also means that 
combining seed orientation information into the cost metric does result in certain improvement in the performance of the 
algorithm. 
 

 
Figure 7: Sensitivity of cost metrics to orientation segmentation error 

 



 
Figure 8: Sensitivity of cost metrics to position segmentation error 

 
4. CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have extended our previously proposed quasi-polynomial time algorithm (MARSHAL) to combine the 
information of seed orientations into matching procedure. Simulation results show that the cost metrics considering seed 
orientation can further improve the matching rate of MARSHAL, and robust to certain amount of seed segmentation 
errors in both position and orientation.  
 



An underlying assumption of MARSHAL is that all the seeds are segmented and their 2D positions and orientations are 
known. In reality, however, some seeds always remain hidden, and some are segmented spuriously35,63,64. In a parallel 
work63, we extended MARSHAL to deal with hidden seeds. In phantom study, we managed to recover >96% seeds from 
three images and >99% from four images, and the algorithm was robust to segmentation error up to 1 mm and hidden 
seed rate up to 8%. While the matching rate was excellent, the reconstruction error for mismatched seeds remained 3-
8mm. In this paper, Sec. 3 shows that under average segmentation errors, cost metrics that utilize seed orientation 
significantly lower the reconstruction error for mismatched seeds, generally to less than 1mm.  
 
We conjecture that combining these new cost metrics in our hidden seed recovery method63 will result in superior seed 
matching rate and low reconstruction error for both matched and unmatched seeds, and thereby yield a clinically 
applicable solution. 
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C-arm Calibration - Is it Really Necessary?�
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Abstract. C-arm fluoroscopy is modelled as a perspective projection,
the parameters of which are estimated through a calibration procedure.
It has been universally accepted that precise intra-procedural calibration
is a prerequisite for accurate quantitative C-arm fluoroscopy guidance.
Calibration, however, significantly adds to system complexity, which is
a major impediment to clinical practice. We challenge the status quo by
questioning the assumption that precise intra-procedural calibration is
really necessary. We derived theoretical bounds for the sensitivity of 3D
measurements to mis-calibration. Experimental results corroborated the
theory in that mis-calibration in the focal spot by as much as 50 mm still
allows for tracking with an accuracy of 0.5 mm in translation and 0.65o in
rotation, and such mis-calibration does not impose any additional error
on the reconstruction of small objects.

1 Introduction

C-arm fluoroscopy is ubiquitous in general surgery, due to its real-time nature,
versatility, and low cost. At the same time, quantitative fluoroscopy has not
found a large scale clinical acceptance, because of inherent technical difficulties
and needs to solve four major problems: (1) C-arm image distortion; (2) Calibra-
tion of model parameters; (3) Pose recovery or tracking when multiple images
are taken; and (4) Registration to imaging modalities. Some of the prominent
works that have tackled the above problems are [1, 2]. The driving application
of our research is prostate brachytherapy, where radioactive seeds are required
to be precisely placed into the prostate. Quantitative fluoroscopy could enable
a significant improvement in the current clinical practice.

If is known that both image distortion[3] and calibration[4] may vary signif-
icantly with pose. Image distortion usually has a consequential contribution to
reconstruction error and needs to be compensated. Thus the additional cost of a
full online calibration is not substantial. Recently developed advanced intensifier
tubes allow for lesser distortion, while modern flat panel detectors obviate dis-
tortion correction altogether. This fact brings up the question whether we need
to calibrate the C-arm fully at each pose. The question also leads to the broader
issue, that even if it is not pose dependent, how accurate does calibration need to
be. In spite of the importance of calibration in C-arm fluoroscopy, as far as the
authors are aware, there has been no prior work that conducts this analysis. The
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vision community has a similar problem [5, 6] when cameras are used for visual
serving of robots. We do not go into a detailed comparison for lack of space.

In quantitative C-arm fluoroscopy, we typically need to measure the spatial
transformation between two objects, such as a vertebra and a bone drill, as com-
pared to the transformation between an object and the C-arm itself. Thus the
central intuition of this paper is that while an incorrect calibration gives erro-
neous estimates for the absolute transformations, nevertheless it still provides
acceptable relative estimates. The consequence of this conjecture is potentially
far reaching, as it can turn fluoroscopy to an affordable quantitative measure-
ment tool in a large family of procedures. It should be however noted that we do
not claim that calibration would always be unnecessary, since there are many ap-
plications that require high reconstruction accuracy. The decision should always
be made case by case, experimentally. In this paper, we build a mathematical
framework to formally address this issue and lend credit to the intuition that
a loose estimate of the C-arm parameters might suffice in applications where
the relative pose of objects is to be measured. In particular, we prove in theory
and demonstrate experimentally that intra-operative dosimetry of brachyther-
apy implants is feasible with an un-calibrated C-arm.

2 Mathematical Framework

C-arm Imaging Model: Geometric aspects of fluoroscopic imaging can be
approximated as a perspective projection with five parameters[7]. There are a
total of five independent parameters that need to be evaluated by the calibration
procedure - the pixel sizes (two) and the focal spot (three). The pixel sizes are
fixed and remain unchanged throughout the life of the C-arm, reducing online-
calibration to just the focal spot. Though our framework can study sensitivity
due to any of the five parameters, we limit ourselves only to the focal spot.

2.1 Model for Reconstruction Space Transformation

As illustrated in Figure 1(a), let A & B (with reference frames FA & FB) be the
two objects being imaged. The assumptions are: (i) IFA,I FB can be computed
from the images; (ii) A & B are not large in comparison to the focal length; (iii)
FA and FB are close by; and (iv) the quantity of interest is AFB = (IFA)−1 IFB .
Let f̄1 be the true focal spot and f̄2 = (f̄1 + D̄) be the mis-calibrated estimate.
We claim that even though the absolute locations of the objects are off, their
relative transformation might still be accurate.

A transformation is needed that can take the absolute location of an object
reconstructed with calibration f̄1, and compute its corresponding location with
calibration f̄2. We claim that the simplest transformation will be a linear affine
model T . The intuition derives from the observation that the image plane is the
same in both reconstruction spaces. Thus if P1 (not in homogenous coordinates)
projects to a point p on the image, then it is constrained to be on line L̄1
in the f̄1-space and on L̄2 in f̄2-space. Thus we seek a continuous invertible
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Fig. 1. Mis-calibration (a) shifts all reconstructed objects under an affine transforma-
tion; (b) rotates and scales a straight line segment; (c) Pose dependent calibration
might be successfully approximated by using the mean value

transformation that projects L̄1 to L̄2. By incorporating the above constraints,
T can be evaluated to be,

P2 = T · P1 =

⎡

⎣
1 0 Dx/f1z

0 1 Dy/f1z

0 0 1 + (Dz/f1z)

⎤

⎦ · P1 = P1 + (d · Z/f1z)D̂ (1)

where with respect to (wrt) FI , D̄ = (Dx, Dy, Dz); d = ‖D̄‖2; D̂ = D̄/d;
f̄1 = (f1x, f1y, f1z); and P1 = (X, Y, Z). Each point is effectively translated in
direction D̂ by an amount proportional to its distance from the image. Experi-
ments measuring the correctness of this affine model are available in Section 3.
Thus to study sensitivity, it is sufficient to study the properties of T .

2.2 Changes in Length and Scale

T preserves the scale along the x , y-axes, but scales the space along the z -axis.
Let P1(X1, Y1, Z1) & P2(X2, Y2, Z2) be any two points (not necessarily close to
each other) in the f̄1-space at a distance of l1. T maps them to points Q1 & Q2
in the f̄2-space at a distance of l2 (Figure 1 (b)). It can be shown that

‖l2 − l1‖ ≤ d

f1z
|Z1 − Z2| (2)

It directly follows from Equation (2) that T does not alter the length sig-
nificantly. As an example, a 10 mm calibration error would affect the length of
a 30 mm thoracic pedicle screw at an angle of 45o by less than 0.2 mm (focal
length ∼ 1 m), which is significantly less than the error from other sources.
Thus FA, FB will not change their relative translation by a factor more than
that specified by Equation (2).
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2.3 Changes in Absolute Orientation

A change in orientation results from the object having a depth (Figure 1 (c)).
It can be shown geometrically that the orientation error is maximal when the
vector P1P2 is roughly orthogonal to D̄ and is purely in the vertical plane. The
amount (θ) and the axis (κ̂) of rotation, through a series of computations can be
shown to be as in Equation (3). The bound on the rotation error is dependent
only on origin mis-calibration and not on that in focal length . More importantly
it is independent of the height/depth of the object (as far as it is non-planar) and
its distance from the image plane. Thus FA, FB in Figure 1 will observe the same
absolute rotation, in effect not experiencing any relative rotation. Experimental
results corroborating this claim are available in Section 3.

|θ| ≤ arcsin
[√

D2
x+D2

y

f1z

]
∼

√
D2

x+D2
y

f1z
; κ̂ = 1√

D2
x+D2

y

(Dy, −Dx, 0) (3)

2.4 Error in Reconstruction of Point Features

In many applications (particularly in brachytherapy), C-arms are used to recon-
struct 3D point objects. This is done by obtaining multiple images at varying
orientations and then using triangulation to obtain the desired intersection. In
ideal circumstances, all the lines would intersect at a unique point. In practice
however, calibration (and other) errors lead to non-intersecting lines. We will
attempt to bound the error in this symbolic reconstruction of the point. Let
point P be imaged from N different poses and reconstructed in a tracker frame
FA, which is stationary wrt P . Let the ith pose have a focal spot error (in frame
FA) of D̄i. Without errors, each reconstructed line (li) would pass through P . It
can be shown that due to the calibration error D̄i, the new line passes through
a new point P̄ ′

A and undergoes a rotation φ.

P̄ ′
A ∼ P̄A + [0 0

(P̄A · D̄i)
fiz

]′ ; φ ∼ (l̂i · D̄i) sinθi

fiz
(4)

where θi is the angle that li makes with the z-axis of FA. The rotation is fairly
small and can be ignored. Thus PA is at a distance of (P̄A · D̄i)sinθi/fiz from
li. If Q is the symbolic intersection of all li’s, then it can be shown that Q is
no further away than (dmax

fz
sinθmax)‖PA‖ away from any of the lines. Moreover,

the reconstruction error (RE) can also be shown to be bounded by

RE = ‖(Q̄ − P̄A)‖ <

√
2 dmax

fz
‖P̄A‖ (5)

where dmax is the maximum amount of mis-calibration and fz is the minimum
focal length. Thus a 10 mm focal length error causes an error less than 0.5 mm
for a point at a distance of 35 mm. Note that this is the worst case error analysis
and in practice the dot product in Equation (4) mutually cancels positive and
negative errors, leading to extremely low reconstruction errors (Section 3).
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2.5 The Optimal Choice for Calibration Parameters

Since the focal spot is pose dependant, and the results from Section 2.2, & 2.3
suggest robustness to mis-calibration, choosing a constant calibration for quan-
titative reconstruction might be viable. In the scenario that the focal spot might
vary as much as 10 mm from one pose to another, “what constant calibration
should be chosen to minimize error”?

Let us assume that we are imaging a point P from N different poses (Figure
1 (c)). Wrt frame FI , let the ith pose have the focal spot at f̄i = (fix, fiy, fiz) and
the point be at location Pi = (Xi, Yi, Zi). Note that we assume: (a) variations
in each of fix, fiy, fiz, Xi, Yi, Zi & pose are independent; (b) Pi’s are close to
the iso-center, i.e. variations in Xi, Yi, Zi are not high. We choose a constant
value of F̄ = (Fx, Fy, Fz) for the focal spot, which will displace the point Pi to
Qi = T (f̄i, F ) · Pi. The aim is to choose an F̄ which minimizes the net variation
of ∆Qi = Qi − µQ. Through a series of computations, it can be shown that

µQ = µP +
µz

µfz
(F̄ − µ̄f ) (6)

∆Qi = (Pi − µP ) + [
∆Zi

µfz
− µz∆fiz

µ2
fz

]F̄ +
µz∆fiz

µ2
fz

µ̄f − ∆Zi

µfz
µ̄f − µz

µfz
∆f̄i (7)

where µQ, µP , µz, µfz, µ̄f are the mean values of Qj , Pj , Zj , fjz, f̄j ; Zj = µz +
∆Zj and likewise for fjz , f̄j, where j = 1 . . .N . In the above calculations, the
second order terms either summed to 0 due to the independence of the variables
or were too small in comparison. Our choice of F̄ should be the one that min-
imizes the variance(∆Q) = var(∆Qx) + var(∆Qy) + var(∆Qz). It should be
noted that Fz scales the whole space, i.e. a lower value will decrease the vari-
ance, implying that the choice of Fz = 0 forces var(Qz) = 0 by forcing all Q′

is to
lie on a plane. Thus var(Qz) does not provide sufficient constraints for Fz . We
will first obtain Fx, Fy by minimizing the variance along x, y-axes (since there is
no scaling in these directions), and then will compute Fz . Notice that the first
term in Equation (7) is due to the relative movement in P , while the rest is due
to an error in the calibration. Since we are interested only in the variance due
to mis-calibration, we will ignore the variations in P . Minimizing var(∆Q) and
enforcing independence of fix, fiy & fiz gives

F̄ = µ̄f − ΣN
1 ∆fiz∆f̄j

ΣN
1 ∆f2

iz

µfz = [ µfx, µfy, 0 ]T (8)

As expected, Fz = 0 from above. To compute Fz , we need to impose length
preserving constraints. Thus if we measure a line segment of length l in each
image, use Equation (2) to derive the net length error, the minimization implies

Fz = µfz(1 − ΣN
1 ∆f2

iz

Nµ2
fz

) ∼ µfz (9)

Thus F̄ = µ̄f (the mean), which is fairly intuitive and probably in common
practice. Likewise, this particular choice of Fx, Fy is also a length preserving
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constraint, i.e. it minimizes the error in lengths of line segments. Calibration
error in ∆Qi now reduces to − µz

µfz
∆f̄i, which has a stable mean and low variance.

Equation (10) gives a bound on the error when the assumed value of F̄ is away
from the mean µ̄f by a distance d. A 10 mm variation in the focal length (var ∼
3 mm), P ′s roughly at the iso-center having a depth variation of 100 mm and
the assumed calibration unusually away from µ̄f by 50 mm still bounds the
maximum error by 0.75 mm. Thus large and constant mis-calibration in many
applications, might still provide sub-millimetric 3D quantitative measurements.

error ≤
√

d2var(Z) + µ2
zvar(‖f̄‖)

µfz
(10)

3 Phantom Experiments and Results

Validity of the Model: Equations (1) & (3) give the translation and rotation
transformations as predicted by the affine model, the accuracy of which would
furnish the validity of the model. We used the FTRAC fiducial (Figure 3), a
small image-based fluoroscope tracking fiducial, which (given the calibration) can
track a C-arm with an accuracy of 0.5 mm in translation and 0.65o in rotation
[7]. The fiducial was imaged using a Philips Integris V3000 fluoroscope and the
true calibration read off the machine display. The images were not corrected for
distortion. The pose of the fiducial (wrt to FI) was first evaluated using the
correct calibration, and then with the mis-calibrated parameters. The difference
between the pose change predicted by the equations and the one computed
using the non-linear pose estimation software, is displayed in Figure 2 (a) as a
function of maximum calibration error. Even when mis-calibration is as high as
50 mm, the model can predict the rotation-axis with an accuracy of 4o, amount of
rotation under 1o and translation under 1.5 mm. For extreme mis-calibrations
the translation error linearly increases, while rotation is still stable. Thus the
model seems to predict with an acceptable accuracy.

Accuracy of C-arm Tracking: The FTRAC fiducial was mounted on a 0.02o

accuracy rotational turntable, while the fluoroscope was kept stationary. The
turntable was rotated by known precise amounts (ground truth) and images
were taken. The relative poses were also computed using the pose estimation
software. The accuracy in the estimation of C-arm motion is given by the differ-
ence between the computed relative pose and the true relative pose. The tracking
accuracy is plotted in Figure 2 (b) as a function of mis-calibration. Even a high
mis-calibration of 150 mm adds no additional error in C-arm motion estimation,
fixing the value at 0.45 mm in translation and 0.6o in rotation. An unusually
high mis-calibration of 400 mm also only marginally decreases accuracy. Thus,
mis-calibration does not increase the error of C-arm tracking .

3D Quantitative Reconstruction using Multiple Images: In addition to
tracking a C-arm, it is equally important that multiple objects in the field of
view (eg. vertebrae and screws) be reconstructed accurately relative to each
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Fig. 2. Note the scale variation in x-axis. (a) An affine transformation is able to predict
the movement of 3D objects due to mis-calibration; (b) C-arm tracking is insensitive
to mis-calibration; 3D Reconstruction is insensitive to mis-calibration in (c) origin;
(d) focal length up to 50 mm, beyond which it starts to linearly drift away from the
tracking fiducial. Notice that the shape of the implant (relative err) is barely altered;
(e) 3D reconstruction error decreases with an increase in images used.

Fig. 3. An image of the seed phantom attached to the FTRAC fiducial (left). The seed
phantom can replicate any implant configuration, using the twelve 5 mm slabs each
with over a hundred holes. A typical X-ray image of the combination (right).

other. In order to validate our hypothesis that 3D reconstruction might not
be sensitive to mis-calibration, we use an accurate acetol phantom (Figure 3)
having 100 dummy radioactive seeds, approximating a brachytherapy implant
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(Figure 3). The true 3D coordinate of each seed wrt the fiducial is known by
rigid attachment. The C-arm is tracked using the FTRAC fiducial and the 3D
seed coordinates are computed by triangulation (an algorithm called MARSHAL
is used to establish correspondences). The difference between the computed and
the true seed location gives us the 3D reconstruction error for each seed (wrt
fiducial). The relative reconstruction error removes any consistent shift reflecting
any change in shape. These errors are plotted as a function of mis-calibration
in Figure 2 (c), (d). The reconstruction error is insensitive to mis-calibration in
origin and focal length errors of up to 50 mm. The shape of the implant is stable
even for large calibration errors. Figure 2 (e) shows a drop in reconstruction
error as the number of images increase. Thus mis-calibration does not decrease
reconstruction accuracy.

4 Conclusion

We modelled the the effects of mis-calibration on 3D reconstruction as an affine
transform, and proved its validity experimentally. We have derived bounds on
the amount of scaling, translation and rotation error. For pose dependant cali-
bration, we proved that using the mean calibration minimizes the reconstruction
variance. Phantom experiments with a radiographic fiducial indicate that C-arm
tracking is insensitive to mis-calibrations. We also showed that mis-calibration
up to 50 mm adds no additional error in 3D reconstruction of small objects,
beyond which the reconstructed objects begin to drift wrt the fiducial, while
still retaining the shape. In conclusion, a significant family of quantitative fluo-
roscopy applications involving localization of small markers can function without
cumbersome on-line calibration. A constant loose calibration might suffice.
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Intraoperative dosimetric quality assurance in prostate brachytherapy critically depends on discern-
ing the three-dimensional �3D� locations of implanted seeds. The ability to reconstruct the im-
planted seeds intraoperatively will allow us to make immediate provisions for dosimetric deviations
from the optimal implant plan. A method for seed reconstruction from segmented C-arm fluoros-
copy images is proposed. The 3D coordinates of the implanted seeds can be calculated upon
resolving the correspondence of seeds in multiple x-ray images. We formalize seed-matching as a
combinatorial optimization problem, which has salient features: �a� extensively studied solutions by
the computer science community; �b� proof for the nonexistence of any polynomial time exact
algorithm; and �c� a practical pseudo-polynomial algorithm that mostly runs in O�N3� time using
any number of images. We prove that two images are insufficient to correctly match the seeds,
while a third image renders the matching problem to be of nonpolynomial complexity. We utilize
the special structure of the problem and propose a pseudopolynomial time algorithm. Using three
presegmented images, matching and reconstruction of brachytherapy seeds using the Hungarian
algorithm achieved complete matching in simulation experiments; and 98.5% in phantom experi-
ments. 3D reconstruction error for correctly matched seeds has a mean of 0.63 mm, and 0.9 mm for
incorrectly matched seeds. The maximum seed reconstruction error in each implant was typically
around 1.32 mm. Both on synthetic data and in phantom experiments, matching rate and recon-
struction error achieved using presegmented images was found to be sufficient for prostate brachy-
therapy. The algorithm is extendable to deal with arbitrary number of images without any loss in
speed or accuracy. The algorithm is sufficiently generic to provide a practical solution to any
correspondence problem, across different imaging modalities and features. © 2005 American As-
sociation of Physicists in Medicine. �DOI: 10.1118/1.2104087�

Key words: C-arm, fluoroscopy, seed matching, reconstruction, prostate brachytherapy, radiation
planning
I. MOTIVATION AND BACKGROUND

With an approximate annual incidence of 220,000 new cases
and 33,000 deaths prostate cancer continues to be the most
common cancer in men in the United States.1 For several
decades, the definitive treatment for low risk prostate cancer
was radical prostatectomy or external beam radiation
therapy,2 but low dose rate permanent seed brachytherapy
�shortly brachytherapy thereafter in this document� today can
achieve virtually equivalent outcomes.3,4 The success of

brachytherapy �i.e., maximizing its curative force while

3475 Med. Phys. 32 „11…, November 2005 0094-2405/2005/32„
minimizing its co-morbidity� chiefly depends on our ability
to tailor the therapeutic dose to the patient’s individual
anatomy. In contemporary practice, however, implant plan-
ning is based on idealistic preplanned seed patterns that, as
15 years of clinical practice has clearly demonstrated, are not
achievable in the actual human body. According to a com-
prehensive review by the American Brachytherapy Society,5

the preplanned technique used for permanent prostate
brachytherapy has limitations that may be overcome by in-

traoperative planning. At the same time, continues the re-

347511…/3475/18/$22.50 © 2005 Am. Assoc. Phys. Med.
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port, the major current limitation of intraoperative planning
is the inability to localize the seeds in relation to the pros-
tate. There are excellent algorithmic and computational tools
available today to optimize a brachytherapy treatment plan
intraoperatively, thereby allowing for an improved dose cov-
erage. These methods, however, critically require that the
exact three-dimensional �3D� locations of the implanted
seeds are precisely known with respect to the patient’s
anatomy.

Transrectal ultrasound (TRUS) imaging: Prostate
brachytherapy is almost exclusively performed under TRUS
guidance. While TRUS provides adequate imaging of the
soft tissue anatomy, it does not allow for robust localization
of the implanted brachytherapy seeds. Various researchers
have tried to segment the seeds from TRUS images by link-
ing seeds with spacers,6 using x rays to initialize
segmentation,7 using vibro-accoustography8 or transurethral
ultrasound9 as a new imaging modality, or segmenting them
directly.10 But even when meticulously hand-segmented, up
to 25% of the seeds may remain hidden in ultrasound.11 This
necessitates the use of some other imaging method in intra-
operative seed localization.

Fluoroscopy: The published history of C-arm fluoros-
copy in brachytherapy originates12 when it was first used as a
solo guidance modality. Shortly after TRUS emerged as a
primary image guidance modality, fluoroscopy became a sec-
ondary tool for gross visual observation. Mobile C-arms are
ubiquitous in contemporary prostate brachytherapy, with ap-
proximately 60%13 of the practitioners using it for qualitative
implant analysis in the operating room. It is considered as the
gold standard for intraoperative visualization of brachy-
therapy seeds. While several groups have published proto-
cols and clinical outcomes favorably supporting C-arm fluo-
roscopy for intraoperative dosimetric analysis,10,14–22 this
technique is yet to become a standard of care across hospi-
tals.

The ability to reconstruct and register the implanted seeds
�that are visible in fluoroscope� to soft tissue anatomy �that is
visible in TRUS� intraoperatively, would allow us to make
immediate provisions for dosimetric deviations from the op-
timal implant plan. At the same time, quantitative use of
fluoroscopy for dosimetric analysis has been hampered by a
plethora of unresolved technical problems. The five major
obstacles we face toward intraoperative dosimetry are: �a�
C-arm distortion correction and calibration; �b� C-arm pose
tracking; �c� seed segmentation; �d� seed matching and re-
construction; and �e� registration of C-arm to TRUS images.

Significant efforts have been made toward computational
fluoroscopy guidance in general surgery,23,24 developing
various tools for distortion correction and calibration. How-
ever, C-arms available in most hospitals do not have encoded
rotational joints, so one never knows where the fluoro shots
are coming from relative to one another. We have addressed
this issue by designing a fluoroscope tracking �hence-forth
FTRAC� fiducial, which is a radiographic fiducial system

25
creating a unique projection image from each direction.
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Various methods partially dealing with C-arm calibration in
brachytherapy have also been proposed,26–28 while some oth-
ers have suggested that it is redundant.29

C-arm to TRUS registration: Attempts have been made
to relate fluoroscopic images to soft tissue anatomy.10,17,30–34

Nevertheless, further research is merited since they are sus-
ceptible to various kinds of errors. We address this issue by
the use of the FTRAC fiducial. It is not only capable of
tracking the C-arm, but also of registering the C-arm to
TRUS by a predetermined placement.

Seed matching and reconstruction: We assume that the
seeds are 3D points and that their image locations are known,
i.e., we do not address automatic segmentation for which
methods are available.15,35–38 Three-dimensional coordinates
of the implanted seeds can now be calculated from multiple
x-ray images upon resolving the correspondence of seeds,
which remains the focus of this paper. Formalization of the
seed-matching problem results in a high complexity search
space of the order 10150 and 10300, from two and three fluo-
roscopic images, respectively. Hence previously proposed
seed-matching approaches have predominantly been heuris-
tic explorations of the search space, with no theoretical as-
surance on the accuracy of the answer.

The early attempts39–41 toward seed matching used three
coplanar images �coplanar images are those where the im-
plant and the three x-ray sources are approximately in the
same plane�. The images were divided into variable width
bands, formed by comparing coordinates along the rotation
axis. Furthermore, in order to make the bands, it was as-
sumed that the seeds are near the iso-center of the C-arm or
at least have similar magnifications in all the images. These
methods are prone to calibration errors and become ineffec-
tive as the number of seeds increases. These ideas were fur-
ther extended by accommodating for patient motion,42 and
yet all the seeds could not be reliably reconstructed. Further
geometrical constraints were imposed by assuming that some
of the seeds are in a straight line43 or on quadratic curves,44

which due to seed migration seems to be an assumption not
supported by compelling evidence.

The first step toward mathematical formalization came
with the construction of a cost matrix,45 where exhaustive
matching gave the lowest cost solution. Though it eliminated
extraneous assumptions, it required impractical computa-
tional resources. A greedy randomized algorithm,46 tested
with various cost-metrics, was suggested to reduce the run-
time. This method gives a different output for each run and is
typically iterated a few hundred times, choosing the sequen-
tially lowest cost. Though this method might provide an an-
swer close to the correct match, its randomization does make
any claim on the number of iterations required or proximity
of the final answer. Fast-CARS47 is another variant, which
significantly improved the computational complexity, where
“for each cost matrix an exhaustive match can be performed
to obtain the best possible matches.” It reduced the run-time
from O��N!�2� to O��A!�2�, where A is the average number of
seeds in the band. Though it made the search faster, it still

ran in exponential time. For example, if A=10 then the num-
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ber of computations would still be high at O�1014�.
Independently, a set of heuristic rules16 were suggested

for seed matching that attempted to reduce misclassifica-
tions. Simulated annealing36 was proposed as an alternate
technique to reach the global minimum. Another technique28

was proposed that optimizes on seed positions and camera
parameters, by generating simulated images and iterating
them until they match the observed images. These optimiza-
tion methods are prone to fall into local minima and may not
be able to recover from them. A statistical simulation of seed
reconstruction uncertainty was conducted,48 but did not ad-
dress the problem of seed matching. For completeness, we
also mention that CT and MRI based techniques49,50 are also
proposed, but cannot be used intraoperatively and have poor
resolution in the axial direction.

The matching problem is also prevalent in the computer
vision community, where two-dimensional points are tracked
and reconstructed to compute motion. Researchers have tried
using noniterative greedy algorithms,51 also incorporating
spurious and hidden points.52,53 Occlusion itself has also
been a known problem.54 These algorithms were optimized
for a dense set of moving points, while specialized algo-
rithms are used for sparse matchings,55,56 which can also be
used in pattern recognition57 across images. These algo-
rithms are usually catered to achieve real-time performance,
as compared to a complete matching, and hence do not ap-
pear to be appropriate in a medical application.

The primary contribution of this work is a new theoretical
framework for seed matching. The framework tackles issues
of optimality and presents a practical algorithm that can be
used. Moreover, the framework ensures a polynomial run-
time of O�N3� on the algorithm, an improvement over previ-
ous methods. While it has been motivated by prostate
brachytherapy, it is a general purpose correspondence algo-
rithm that appears to be usable in many synergistic problems.
Besides the aforementioned problem, we are exploring
matching and reconstruction of brachytherapy seeds using
the Hungarian algorithm �MARSHAL� for the matching be-
tween 3D clouds of objects, fiducial-based registration in
CT/MRI imaging, and calibration of tracked ultrasound. In
these applications, MARSHAL appears to be a potent tool
that can replace traditional iterative closest point and other
gradient descent optimizations whose exit criteria are gov-
erned by custom-tuned thresholds. Section II describes the
theoretical foundation and the proposed algorithm. Section
III discusses the experiments and results. In Sec. IV, we dis-
cuss the shortcomings of the algorithm and the future work.
Finally, we conclude in Sec. V.

II. MATERIALS AND METHODS

We convert seed-matching to network-flow-based combi-
natorial optimization. Our formulation has many salient fea-
tures: �a� a global optimization using all seeds, as compared
to a local seed clustering based approach; �b� exact solutions
studied extensively by the computer science community; �c�
addressing theoretically the achievable bounds by any algo-

rithm; �d� guaranteed existence of a polynomial time solution
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for achieving the global minima for seed-matching from two
images; �e� proof of the nonexistence of a polynomial time
solution in case of more than two images; �f� a practical
pseudo-polynomial algorithm using three images and mostly
having an O�N3� claim on the space-time complexity; �g� an
algorithm that does not become slower as the number of
images is increased. A polynomial-time algorithm is one that
runs in a number of computations, polynomial in the size of
the input. Further details are available in the literature.58 We
do not assume any prior information �e.g., inserted seed po-
sitions�, the value of which is questionable due to intraopera-
tive seed migration and tissue deformation.

A. A generic network-flow-based formulation

A network flow formulation is created, where any flow in
the network would represent a matching and the desired so-
lution is the flow with minimum cost. Let N seeds be inserted
and C-arm images I1 , I2 be acquired. Let sij be the position of
the ith seed in jth image. We construct a directed network as
shown in Fig. 1.

Sets A and B, each with N nodes, represent the two im-
ages I1 and I2. While there are no edges within the set, di-
rected edges �links� run from all vertices in set A to all ver-
tices in set B. There are N links at source S, each link
connecting to a node in A. Similarly each node in B is con-
nected to sink T. The flow originates at S and ends at T, with
each link allowing a flow of value 1 or 0, where 1 means that
the edge is selected and 0 means that it is not. The problem
is to efficiently compute a flow in the network that can
achieve a total flow of value N.

It can be proved that any solution to the seed-matching
problem is a solution to the flow problem and vice-versa. To
have a net flow of N, each link connecting either the source
or the sink has to support a flow 1. Now by the conservation
of flow at each node, every node in set A will have to dis-
patch a unit flow to some node in set B. Moreover, each node
in set B can accept only a unit flow, because any extra flow
cannot be passed on to T and any deficiency would mean that
T does not have a total flow of N units. The set of all links
with nonzero flow provide a feasible matching. It can be
verified that any matching of the seeds also provides a fea-
sible flow. This proves that the flow problem is equivalent to

FIG. 1. The seed matching problem can be converted to a network flow
graph. The best possible matching reduces to finding out the maximum flow
with minimum cost.
the seed matching problem.
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Simple combinations compute N! feasible solutions to the
seed-matching problem, giving rise to N! feasible flows. To
achieve the optimal solution, the link connecting seed si1 to
seed sj2 is assigned a cost Cij. The cost Cij represents the
likelihood of seed si1 matching seed sj2, with the cost being 0
if they match perfectly and � �infinity� if they do not match
at all. A popular example for the cost-metric is seed recon-
struction accuracy. Further details are provided in Sec. II E.
Any feasible flow has a net cost associated with it, the value
of which is �i=1

n � j=i
n Cij f ij, where f ij is the flow in link ij and

Cij is the cost of sending a unit flow along that link. Thus the
seed-matching problem is reduced to finding the flow with
minimum cost, and can be written down as

min �
i=1

N

�
j=1

N

Cij f ij ,

where fij � �0,1�; �1�

�
j=1

N

fij = 1 ∀ i and �
j=1

N

fij = 1 ∀ j .

The min-cost flow can be computed using cycle-
canceling, successive shortest path, primal-dual, out-of-kilter
or relaxation algorithms. These are all similar in their work-
ing and hence reducible to each other. Though they are
straightforward to use, they run in pseudopolynomial time.
The first weakly polynomial time algorithm was derived us-
ing an idea called scaling.59 Capacity scaling, cost scaling,
and double scaling algorithms that were developed on this
idea are all weakly polynomial time algorithms. Repeated/
enhanced capacity scaling and minimum mean-cost cycle al-
gorithms achieve a strongly polynomial run-time. Alter-
nately, linear-programming based techniques like simplex,
interior point method or network simplex can also be used.
Today, fast algorithms are available both freely60 and
commercially.61 A comprehensive review of the above is
available in the literature.62

We implemented the cycle canceling algorithm, which is
the most straightforward of all the above. A feasible preflow
is input as the current network flow. Then we generate the
residual network, which is based on the difference between
the network capacity and the current network flow, and
search for negative cost cycles in the residual network. If
there exists a negative cost cycle in the residual network, we
decrease the cost by adding a flow along the negative cycle.
Then we generate a new residual network based on this new
flow in the network. We repeat this procedure until there is
no negative cost cycle in the residual network. To find a
negative cycle, we use the Bellman-Ford algorithm,58 which
runs in O�Edges�Vertices� time. Thus the run-time for the
cycle-canceling algorithm is O�cost of the initial flow�
�O�Edges�Vertices�, which for integer costs will be
pseudopolynomial. One way to boost performance is to use
the negative cycle with minimum weight instead of any
negative cycle, but that computation itself is NP hard. So

researchers have suggested choosing the minimum mean-
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cost cycle or canceling several node-disjoint cycles at once,
both of which have strongly polynomial run-times.

Hence the seed-matching algorithm will have a polyno-
mial run-time. Though strongly polynomial time algorithms
are available, in practice the basic cycle-canceling algorithm
itself was sufficiently fast. This is due to the favorable prob-
lem structure arising from a bipartite network and epipolar
constraints of x-ray imaging. The worst case theoretical run-
time above is for generic networks. It should be noted that a
significantly faster O�N3� solution is possible if �a� all the
nodes are available, �b� the number of nodes in both sets are
equal, and �c� only unit flows are allowed. This is achieved
by converting the generic network flow problem into a
weighted bipartite matching problem, explained in the next
section. Though we have implemented the cycle canceling
algorithm, we have also tested and implemented a faster so-
lution. However, this faster solution is not sufficiently ge-
neric to address the hidden seeds and other problems �Sec.
IV�.

B. Seed matching from two images

When all seed locations in the two images are known, the
minimum-cost maximum-flow formulation reduces further to
the specific problem of minimum-weight matching in bipar-
tite graphs, also known as the assignment problem �illus-
trated in Fig. 2� and can be solved very quickly. The problem
is to find a minimum weight subset of edges such that all the
vertices are covered exactly once. A real-world problem
could be the assignments of jobs to workers in a factory.
Each worker �set A� can do some jobs �set B� at a certain
cost. We seek an assignment of jobs, such that all jobs are
completed, each worker gets exactly one job, and the total
cost is minimized. The assignment problem is also formal-
ized by Eq. �1�.

The assignment problem is solved in O�N3� run-time by
using the Hungarian algorithm.62–64 Since the algorithm has
been known for over four decades in the literature, we do not
provide the full working of the algorithm, but instead just an
outline. The N�N cost matrix C is constructed. The final aim
is to choose exactly one element from each row �and col-

FIG. 2. Two image seed matching, modeled earlier as a min-cost max-flow
problem, also reduces to the assignment problem. The best possible solution
reduces to evaluating the minimum cost bipartite matching, which can be
achieved in O�N3� time using the Hungarian algorithm.
umn� such that the sum of the elements has the lowest attain-
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able value. Thus, an equivalent matrix having at least one
zero in each row �and column� is obtained by subsequent
subtractions using the smallest element in each row �and col-
umn�. This matrix is used to find a selection of zeros such
that each row and column has exactly one zero. If this exists,
then it provides the min-cost matching. If this does not exist,
a line covering procedure is used to make an adjustment to
the matrix and generate zeros in useful locations. This is
iterated a maximum of O�N� times �proof available in the
literature� until a solution results. The locations of all zeros
provide the minimum weight matching. Thus the Hungarian
algorithm provides the matching with the lowest possible
cost.

C. Theoretical foundations for uniqueness
in matching

It is well known that due to singularities in projective
imaging, reconstructing seeds from two images is inherently
inaccurate. A third image is required to remove this singular-
ity. Further investigations reveal singular constellations even
with three images. Previously proposed algorithms use three
coplanar images, i.e., where the three x-ray sources and the
implant are all in the same plane. Figure 3�a� illustrates the
arising singular constellations for this choice of images. Due
to the small size of the prostate, the x rays entering it are
nearly parallel, the average variation being around 2°. The
symmetry establishes that there are multiple constellations
producing the same x-ray images, with the number of alter-
nate constellations increasing with the number of seeds. Er-
rors are further amplified with inaccuracies in segmentation,

FIG. 3. �a� Three coplanar images also have seed constellation singularities.
Multiple seed constellations will produce the same x-ray images. �b� Seed
constellation singularity arising when three noncoplanar images are used.
Two sets of reconstructions are viable for the same x-ray images. In fact this
cube can be replicated to construct singularities that arise when more than
three images are used.
C-arm calibration and tracking. Though we used symmetric
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images, singularities can be shown in any three nonsymmet-
ric coplanar images using the generic construction provided
in the below.

Singularities though reduced, are not completely removed
with noncoplanar images, as illustrated in Fig. 3. Since the x
rays entering the prostate are nearly parallel, the three imag-
ing directions define a parallelepiped, a 3D parallelogram.
Four seeds sitting at the vertices of the parallelepiped can
create a singularity. The likelihood of this happening in-
creases for large implants, especially since the seeds are in-
serted in parallel straight lines. Thus a fourth image is advis-
able for large implants. Some singular constellations cannot
be resolved by four images either. This constellation can be
achieved by putting together two parallelepipes along the
fourth imaging direction, which will result in two singular
constellations with eight seeds each. This process can con-
struct singularities with any number of images, if taken arbi-
trarily. Theoretically seven images can resolve all singulari-
ties for purely convex objects. Similar results can also be
derived when other properties of the object are known.65 In
brachytherapy however, three to four noncoplanar images
should practically be sufficient.

The above implies that a robust algorithmic framework
for seed matching using three or more images is essential. A
modification of our proposed framework reduces three-
image matching to the tripartite matching problem,64 as illus-
trated in Fig. 4 and Eq. �2� �Cijk is the N�N�N cost-
matrix�. Tripartite matching is similar to bipartite matching,
except that it matches three sets instead of two. In addition, it
assures a matching that is optimal, i.e., has a minimum cost.
Multiple-image based seed matching similarly reduces to the
multipartite matching problem. Though the bipartite problem
is solvable in O�N3�, the tripartite and multipartite problems
are NP-complete. Moreover, finding the minimum weight tri-

FIG. 4. The three-image seed-matching problem reduces to the min-cost
tripartite matching problem. Any see in a given set is connected to every
seed in the other two sets. The problem is NP-hard and no polynomial time
solution is possible to compute the min-cost matching.
partite matching is NP-hard. NP-complete are a class of dif-
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ficult problems thought to be of nonpolynomial complexity.
NP-hard problems are believed to be harder than NP-
complete, where unlike NP-complete, even the validity of a
given solution is not verifiable in polynomial time,58

min �
i=1

N

�
j=1

N

�
k=1

N

Cijkf ijk,

where fijk � �0,1�; �
i=1

N

�
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�
j=1

N

�
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N
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k=1

N

�
i=1

N

fijk = 1 ∀ j

Using another reduction, three-image seed matching re-
duces to the min-weight clique problem58 �a clique is a sub-
graph with edges between all the vertices�. If the images are
taken from arbitrary directions, then the orientation of epipo-
lar lines is unconstrained. Since the implant has N densely
packed seeds roughly shaped as an ellipsoid, any epipolar
line connecting the projection of a seed to its x-ray source is
expected to come in the vicinity of O�N1/3� seeds in the 3D
implant. Note that this estimate is an expected bound and
could vary significantly across individual seeds. When two
images are used, all seeds in the vicinity of the plane con-
necting the seed and the two x-ray source locations would
become feasible. Thus, with unconstrained image orienta-
tions, each seed in an image statistically has an expected
O�N2/3� feasible correspondences in the other image. This
implies that two-image matching has an expected O�N5/3�
feasible doublets. Similarly, it can be established that three-
image matching has an expected O�N4/3� feasible triplets.

This reduction has also been observed experimentally
where two images resulted in about 2000 feasible doublets
for a 100 seed phantom, while a third image reduced it to
about 400 triplets. As the number of images is increased, the
number of feasible tuplets will converge close to O�N�, im-
plying a decrease in the number of alternate implants. This
number can potentially reduce to exactly N, when many
well-chosen images are used. It should be observed that even
having only �1+���N feasible tuplets results in an exponen-
tial search space of O�2N� ��−1�N� for large � and
O��2/ ��−1����−1�N� for small �. A formal proof for the non-
existence of a polynomial-time algorithm can be shown by
constructing a graph with all feasible tuplets as vertices, and
compatibility between triplets as edges. The solution will be
equivalent to finding a min-weight clique of size N. Finding
a feasible clique in a general graph is itself NP-complete,
while finding the clique with minimum cost58 is NP-hard.

D. A practical algorithm for three-image
seed matching

Though still an open problem in complexity theory, it is
widely believed that no polynomial time algorithm can solve
NP-complete or NP-hard problems.58 The field of approxi-

mation algorithms could design quick algorithms that have
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theoretical bounds on the error for both run-time and the
final solution. Unfortunately, these algorithms typically work
on generalized graphs, and may not necessarily incorporate
the inherent structure of our problem. Hence we design our
own algorithm that incorporates the physics of projective
imaging. We propose a practical solution for matching and
reconstruction of brachytherapy seeds using the Hungarian
algorithm, abbreviated henceforth in the paper as
MARSHAL.

The intuition behind MARSHAL can be summarized into:
�a� the original tripartite matching can be projected into in-
spired bipartite matchings; �b� si1 matches sj2 only if they
have a counter-part in the third image; �c� though a low Cij

did not force Cijk to be low for some k, a low Cijk does force
Cij, C jk, and Cki to be low. It is very common in the two-
image case for the epipolar line of si1 to pass through sj2,
even when si1 and sj2 are severely mismatched. Thus in a
matching between images 1 and 2, Cij should be low if and
only if there exists a k such that Cijk is low. If Cijk if high for
all k, then Cij should be given a high value. This assignment
of Cij is different from the purely two-image case, where Cij

could be low even for a strong mismatch. Thus Cij needs to
incorporate information from the third image to remove in-
herent two-image singularities. Since the solution of bipartite
matching should as close as possible to that of the tripartite
matching, the L−� projection �minimum/best value� is used.

Cij = min�Cijk/k = 1, . . . ,N� . �3�

MARSHAL projects the original tripartite problem into
three distinct bipartite problems by the appropriate projection
of the costs. This is similar to projecting the minimum value
along the rows/columns of the three-dimensional cost matrix
Cijk to obtain three two-dimensional cost matrices. The theo-
retical framework of bipartite matchings allows the compu-
tation of the best possible matching for each bipartite prob-
lem in O�N3� run-time. The solutions of the bipartite
matchings are then integrated to obtain a solution to the
original tripartite problem. Hence MARSHAL acts as a
bridge between a purely theoretical framework and an inher-
ent structure in the problem.

The flowchart for MARSHAL is shown in Fig. 5. Using
Eq. �3�, the respective cost matrices for the three image pairs
are obtained. These are used to achieve three independent
bipartite matchings M1�i , j ,−	, M2�−, j ,k	, and M3�i ,− ,k	.
Loops are created next, i.e., if �i1, j1,−	,�−, j1,k1	,
�i2,−,k1	,�i2, j2,−	 �i1,−,km	 are matchings, then
�i1 , j1 ,k1 , i2 , j2 ,k2 , . . . ,km , i1	 is a loop of size m, each loop
ending on the seed it started from. For example, if for the
first seed the matchings are M1�1,1 ,−	, M2�−,1 ,1	,
M3�1,− ,1	, then �1,1,1,1	 is a loop of size 1 representing
seed1. The majority of the loops will have a size of 1, which
can be declared matched. This claim is also experimentally
validated in Sec. III C.

Sometimes matchings get flipped, resulting in loops of
size greater than 1. For example, if s13 had instead matched

s21 in the above-noted example. i.e., if the matchings
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were M1�1,1 ,−	, M2�−,1 ,1	, M3�2,− ,1	, M1�2,2 ,−	,
M2�−,2 ,2	, M3�1,− ,2	, then �1,1,1,2,2,2,1	 would be a loop
of size 2 representing seed1 and 2. Since each loop by defi-
nition is a self-contained subset of seeds with no relation to
other loops, they only need to be matched among themselves
to obtain the correct final answer. These are typically small
loops, the optimal match for which can easily be obtained by

FIG. 5. A flowchart explaining the working of MARSHAL. It runs in O�N3�
time for good data sets.
a brute-force search with O�m!�m!� run-time.
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Theoretically, for error-prone data the size of the loops
could grow large, though practically we never saw it happen.
Nevertheless, brute force search is done only for loops of
size m��, which is a predetermined threshold based on the
largest m that achieves a very fast ��1 s� run-time. Loops of
size greater than � are recursively broken down using
MARSHAL, which would run three bipartite matchings
within this subset and return the correct match. In effect, all
large loops will be broken down into smaller and smaller
loops, until everything is matched. Thus MARSHAL
achieves the correct seed matching and still practically runs
in O�N3�, a significant improvement when compared to pre-
vious methods.

It should be noted that there can be another way to com-
pute loops in the above algorithm. If �i , j ,−	 match after the
first bipartite matching, then their counterpart k in Image3

could also be chosen. We do not do this, since the first bi-
partite matching does not ensure that all k�s are chosen, to
solve which the full tripartite problem would have to be
solved. Moreover, �i1 , j1 ,−	 and �i2 , j2 ,−	 can map on the
same k, or some k can be left untouched after the first bipar-
tite matching. Thus the first bipartite matching attempts to
compute as accurate as possible a correspondence in the first
two images, while the next two matchings will later solve for
any inconsistencies.

Note that the computation in Eq. �3� takes O�N3� time. We
modify it to run in O�N2� time. To compute Cij, si1 and sj2 are
used to reconstruct the 3D point Sij� , which is then projected
on Image3. Let k be the closest point in Image3 to this pro-
jection. Now Sijk is computed and its projection error �PE�
calculated, which is assigned to Cij. Though this Cij does not
strongly satisfy Eq. �3�, it weakly satisfies it. Any consistent
�i , j	 will choose the correct k, while an inconsistent �i , j	
does not have any correct counter-part k, and will anyway be
eliminated in the bipartite matching. Thus our Cij exactly
satisfies Eq. �3� in relevant cases, and will become irrelevant
otherwise.

E. Cost-metric

A comparison proves that some metrics are more effective
than others.46 The metric should incorporate all the available
information, making the global minimum sharper and the
algorithm robust. Hence Cijk should ideally represent the in-
consistency among seeds si1, sj2, and sk3, with 0 indicating
least inconsistent. The basis for most popular choices of Cijk

are reconstruction accuracy �RA� and projection error �PE�.
We do not formally compare the various metrics that we
have tried, but instead provide the intuition behind the pre-
ferred one.

RA, used by most researchers, is computed by first calcu-
lating the equation of the three lines that join each projection
to its respective x-ray source. Due to various errors these
lines never intersect, creating a need for a symbolic intersec-
tion. As explained in Sec. II F, a closed form solution for RA
that minimizes the L2 norm of the distance vector is used in
this publication. Though they do not have an easy closed

form solution, L1, L3, L�, or other norms can also
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be minimized �
v
Li
=�i �kvk

i �. The L� norm would the most
robust, since the higher the order of the norm, the more sen-
sitive it is to the smallest of inconsistencies. Thus, it mea-
sures the accuracy with which the 3D point can be recon-
structed. PE, an alternate metric, can be computed by
extending RA. The 3D reconstructed point can be projected
back into each image, and the mean distance between the
projected location and the observed location of the seed con-
stitute PE. The symbolic intersection of the 3D point can be
computed by minimizing any choice of norm �L1−L��, and
could possibly affect a change in the performance. We have
minimized the L2 norm to compute the 3D intersection, and
used its PE as the metric.

In our experience, PE fares significantly superior as a
cost-metric than RA. Though PE for each seed is its RA
magnified, different seeds will have different magnifications
�depending on depth�. If two seeds have similar RA but dif-
fering PE, the seed with lower PE should ideally be chosen
by the optimization. On the other hand, an algorithm mini-
mizing RA as a metric will not necessarily choose a corre-
spondence that minimizes the deviation of reconstruction
from observation. Thus PE is a stronger reflection of the
observed data and leads to better convergence. In general,
any cost-metric that directly measures the deviation from the
observation performs superior to a metric that does not. A
significant improvement in matching was observed by
switching from RA to PE. A combination of the above-
mentioned ideas is to choose the intersection so as to mini-
mize the L� norm of PE. Thus the most sensitive norm �L��
is minimized on the observations �seed locations on image�,
to compute the 3D intersection. Unfortunately, it requires a
nonlinear optimization due to a lack of a closed form solu-
tion. Though we have not yet used it, this metric is expected
to give the best performance.

F. Seed reconstruction

To compute C, we need to compute the 3D intersection of
the corresponding straight lines in space. Due to various er-
rors these straight lines never intersect, forcing us to com-
pute a symbolic 3D intersection point. The symbolic inter-
section is typically defined as the global minimum of an
error function. Here we propose a simple and quick method
that minimizes the L2 norm of Euclidian distance from the
intersection point to the lines.

Let the total number of 3D straight lines be m, with line i
defined as having unit direction li �ai ,bi ,ci� and a point pi on
it, as shown in Fig. 6. Let P �x ,y ,z� be the representative
intersection of these m lines. Let di be the Euclidian distance
of P from line i. Thus by definition, P achieves the minimum
L2 norm for the vector �d1 ,d2 , . . . ,dm�. In other words, we
need to find a P such that it minimizes a function F. Now, it

can be easily computed that
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F = m � RA2
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where T represents the transpose. Now P minimizes F.
Hence we can write, �F /�x=�F /�y=�F /�z=0, which leads
us to

P = ��
i=1

m

Ai�−1

� ��
i=1

m

Aipi� . �5�

This is the final seed coordinate. We can see that it can be
computed very quickly by a few summations followed by a
3�3 matrix inversion. It should be noted that P is chosen so
as to minimize RA.

G. Seed matching from four or more images

In some rare cases of extremely large/dense implants, an
additional fourth image may be desired. One approach is to
match all possible image pairs and perform a combinatorial
search on the loops that are formed. Though this is accurate,
the run-time complexity is dependent on the number of im-
ages, making the algorithm slow. It was earlier observed that
the number of feasible m-tuplets rapidly comes closer to N.
This property can be used to extend MARSHAL. The algo-
rithm chooses three images at random as primary and the rest
�m−3� as secondary. Using the primary images, it runs ex-
actly as described in Fig. 5, except that each bipartite prob-
lem is a projection of the m-partite problem. In other words
Cij incorporates information from all the m images, as shown

FIG. 6. Three matching points, in general, do not intersect due to various
errors in segmentation, C-arm pose, and calibration. A symbolic intersection
is calculated by finding the point with minimum sum of square distances
from the lines.
as follows:
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Cij = min�Ci1i2. . .im
/i1 = i;i2 = j and i3, . . . ,im � �1,2, . . . ,N�� .

�6�

Extended-MARSHAL will still run in O�N3� time. In
comparison to three-image matching, using four images will
in fact have a faster run-time due to a decrease in loop-size
and due to a better conditioned bipartite matching. An im-
provement in accuracy is also registered owing to the inher-
ent structure in the additional information.

H. Guidelines for performance evaluation

Since MARSHAL is essentially a correspondence algo-
rithm, the % of correctly matched seeds �mean, STD� is the
optimal metric to evaluate its performance. However, it
should be noted that due to the overlap-problem, the % of
declared mismatches would always be an upper-bound. As
illustrated in Fig. 7, both matchings A and B give the correct
3D seed coordinates in a practical sense, though only match-
ing A is correct in a theoretical sense. Owing to our rigid
error analysis criterion, we declare B to be an incorrect
matching, in spite of it being correctly matched in a practical
viewpoint. This will be evident from the low reconstruction
errors for mismatched seeds, which should be comparable to
that of correctly matched seeds.

Error analysis is sometimes also done using PE or RA. As
theoretically described in Sec. II C, a mismatch might still
result in a low PE/RA. This makes performance evaluation
based on PE/RA inaccurate. If available, reconstruction error
�RE�, the 3D distance between the true and the reconstructed
seed location, is an excellent tool for measuring perfor-
mance. To measure any systematic bias in implant recon-
struction or any change in shape, we use the relative recon-
struction error �relative RE�. It is the 3D error when the
reconstructed implant is compared to a shifted �translated,
rotated� version of the ground truth implant.

Typically RE is averaged for all the seeds, leading to po-
tential information misrepresentation. For example, a 100-
seed implant can have 90 seeds correctly matched with
0.25 mm RE, and 10 severely mismatched seeds with 5 mm
RE. Though the average RE in this case is only about
0.7 mm, the 10 mismatched seeds could be hazardous. Thus
a small average RE alone does not necessarily imply a good
matching. A separation of matched and mismatched seeds is
necessary. Note that the distinction between matched and

FIG. 7. Two seeds nearly overlap in the right image. Though both matchings
A and B reconstruct the seeds in the correct location, only one of them is
theoretically correct. We define the other as mismatched, so as to make the
seed matching error analysis extremely rigorous.
mismatched seeds should never be established by using PE/
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RA, but only by an accurate ground truth. RE/PE/RA in ad-
dition to the above, also reflect the accuracy of C-arm track-
ing and seed segmentation. In this light, MARSHAL is
primarily evaluated using % matching and RE for mis-
matched seeds.

Beside establishing tools for performance evaluation, it is
also important to find factors that could adversely affect a
seed matching algorithm. This is crucial, since no polyno-
mial algorithm can assure optimality for more than two im-
ages. The primary factors are the implant seed density and
the size of the prostate. The higher the density or bigger the
prostate, the greater the possibility of mismatches. Besides,
most available C-arms are of moderate quality, with little
reliability of the system supplied parameters. This includes
encoder readings �pose� and parameters like image warp, fo-
cal length, and image origin. Another factor that could affect
performance is the angle of separation between the images.
Thus sensitivity to these factors should be considered when
evaluating any new algorithm.

III. RESULTS AND DISCUSSION

A. Two-image versus three-image matching

By converting the two-image matching problem to a bi-
partite matching problem, we have assured that the
minimum-cost match from all the possible N! matches can be
computed in O�N3� run-time. This proves that there cannot
exist a better match, implying that no other algorithm can
produce a match with a lower cost. It should be noted that
the best possible match is not representative of the correct
match, which is due to the fact that two images are intrinsi-
cally insufficient and do not contain the requisite informa-
tion. Furthermore, the minimum-cost match is dependent on
the choice of cost-metric, i.e., a superior choice for the cost-
metric will result in a superior match. Hence we have proved
that given two images and a choice for the cost-metric,
MARSHAL computes the best possible match �global op-
tima� in polynomial time. Furthermore, we have shown that
information from two images is inherently ill-posed and that
the best match does not correspond to the correct match.

This is also validated using quantitative experiments. Syn-
thetic C-arm images of clinically realistic brachytherapy im-
plant scenarios were created, and the reconstructed and ac-
tual seed locations were compared. Implants with the number
of seeds varying from 60 to 150 in a 50 cc prostate were
tested. Based on our experience, the focal length was chosen
to be 1000 mm, the pixel size was chosen to be 0.25 mm and
the center of the image was chosen to coincide with the
imaging origin. The region of use was at about a distance of
2 /3rd the focal length from the x-ray source. The C-arm
images were all contained inside a 15° cone around the AP
axis. To reflect the nature of the best possible results, no
noise was added in these simulations. Table I shows the per-
formance on this synthetic data.

It can be noticed that two images are clearly insufficient,
correctly matching only 85.2% of the seeds even in the ab-
sence of any noise. The inherent singularity in the two-image

case is indicated by the low PE and high RE for the mis-
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matched seeds. Thus, when only two images are used, there
exist alternate implants that produce the same x-ray images
�low PE of 0.04 mm�, but reconstruct the mismatched seeds
at the wrong 3D location �high RE of 22.2 mm�. Another
way to look at the results is that the desired matching of the
seeds has a cost associated with itself. This cost is close to 0
�in practice it is always a little more than 0 due to pixeliza-
tion errors�. Due to inherent singularities, a significant num-
ber of alternate implant constellations also have a cost very
close to 0. Theoretically, all these are viable implants. Nev-
ertheless, even a pixel size of 0.25 mm results in many of
these alternate implants having a cost lower than the desired
implant, which is then chosen by the algorithm. Thus, any
algorithm which is minimizing the error from observed data
will choose an incorrect matching. This is not the fault of the
matching but rather a deficiency of the input. The suggested
approach, therefore, would be to increase the number of im-
ages. Similar conclusions for two-image matching can also
be drawn from phantom experiments, complete results of
which are available in Sec. III C.

In comparison, using a third image matched all seeds cor-
rectly on noise-free data. Thus while two images are insuffi-
cient, three are practically adequate. As mentioned in Sec.
III C, three-image matching reduces to the tripartite match-
ing problem. Multiple-image based seed matching similarly
reduces to the multipartite matching problem. Though the
bipartite problem was solvable in O�N3�, the min-cost tripar-
tite and multipartite problems are NP-hard, meaning no poly-
nomial algorithm will be able to prove that its solution is the
best achievable. Thus this proves that there cannot exist any
polynomial time algorithm which can solve the matching
problem using three or more images. It should be noted that
algorithms providing practically acceptable solutions �with-
out any claim on absolute optimality� can still exist.

B. Simulations

Studies were conducted on synthetic images to analyze
the effects of various governing parameters. MATLAB soft-
ware was created to model x-ray imaging. Given C-arm pa-

TABLE I. MARSHAL performance using synthetic data. Two images are clea
tion error for the mismatched seeds. All seeds are matched when three imag

Two images

60 80 100

Matching
rate �%�

Match 91.3 90.1 80.9

Reconstruction
error �mm�

0.18 0.15 0.18

Reconstruction
error �mm�

Mismatch 22.1 21.4 22.1

Projection
error �mm�

0.03 0.04 0.04
rameters and implant details, it generated synthetic images

Medical Physics, Vol. 32, No. 11, November 2005
and exact locations of seeds in the images. Random error
was modeled using a uniform probability density function,
i.e., a 1 mm error means that a maximum error of magnitude
1 mm was added, having a uniform probability distribution.
The C-arm geometry was the same as in the previous section.
Individual parameters were changed to understand the sensi-
tivity of MARSHAL. It should be noted that only three im-
ages were used to evaluate the correspondences in all the
simulation experiments. Using four or more images is ex-
pected to improve performance, though not evaluated in
simulation experiments.

Since MARSHAL is essentially a correspondence algo-
rithm, to evaluate performance on simulated data, we com-
puted only the % of correctly matched seeds �mean, STD�.
RE for matched seeds is not plotted, as it is a function of the
particular methods used for C-arm tracking and segmenta-
tion, which are not the focus of this paper.

Segmentation: Seed segmenting from the x-ray images is
one of the most important sources of error. To study the
sensitivity of MARSHAL to segmentation, segmentation er-
ror ranging from 0 to 2 mm in steps of 0.25 mm was added
to each seed coordinate in the synthetic data sets. The com-
puted correspondence was compared to the correct known
correspondence, and the % of correctly matched seeds was
evaluated. The seed density was varied from
1.5 to 1.9 seeds/cc in steps of 0.1, while the prostate volume
was varied from 45 to 55 cc in steps of 5 cc. The averaged
results �mean and STD� from a total of 54 000 iterations are
plotted in Fig. 8�a�.

The results indicate that even with segmentation errors as
high as 1 mm, the mean and STD for % matching is better
than 97% and 2%, respectively. With 1–2 pixel segmenta-
tion error, the average matching rate is practically 100% in
all data sets. Segmentation error needs to increase beyond
1.5 mm for the mean matching rate to fall below the 95%
mark. Moreover, it should be noted that the declared mis-
matches are predominantly due to the overlap problem,
which becomes clear from the low RE for mismatched seeds.
It has an average of 0.52 mm for all the data sets. The maxi-

sufficient, which is clear from the low projection error yet high reconstruc-
e used.

Number of seeds

Three images

0 150 60 80 100 120 150

8 80.8 100 100 100 100 100
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4 0.04 ¯ ¯ ¯ ¯ ¯
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at 1.51 mm, which is natural due to the presence of noise in
segmentation, as compared to an error in matching.
MARSHAL requires seed segmentation errors to be under

3–4 pixels ��1 mm� for optimal performance. For the re-
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mainder of the simulations, we fixed a segmentation error of
0.5 mm �1–2 pixels� to be added to all the datasets.

Seed density and prostate volume: Depending on the

FIG. 8. Error in the performance of
MARSHAL: �a� segmentation error;
�b� cone angle variation; �c� seed den-
sity variation; �d� prostate volume
variation; �e� C-arm pose translation
error; �f� C-arm pose rotation error; �g�
C-arm calibration error; and �h� C-arm
distortion error.
radio-activity of the chosen seed, the seed density is com-
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puted. From some preliminary calculations, seed density
typically ranges from 1.5 to 2 seeds/cc.66 An increase in
seed density could make the matching process more difficult,
since the seed projections in the x-ray image gets more and
more congested. Thus it is extremely necessary to evaluate
the sensitivity of any algorithm to seed density. In a similar
manner, a larger prostate would need a greater amount of
dose, resulting in a greater number of seeds. An increase in
the number of seeds can potentially be of concern as the
number of feasible matches would increase. Matching algo-
rithms are expected to be less sensitive to prostate volume in
comparison to seed density. Nevertheless, they should be
evaluated in view of volume changes.

The seed density was changed from 1 to 2.8 seeds/cc in
steps of 0.1 and the prostate volume was changed from
35 to 80 cc in steps of 5. As mentioned before, segmentation
error was kept constant at 0.5 mm. A total of 23 750 data sets
were evaluated. Averaged results for matching rate, as a
function of seed density and prostate volume are plotted in
Figs. 8�c� and 8�d�, respectively. It can be noticed that both
the mean and STD are stable throughout with a variation of
less than 1%. The mean matching rate is 99% or above, with
a few seeds in some cases being counted as mismatched due
to the overlap problem. Thus MARSHAL can be declared
robust to variations in seed density and prostate volume.

Separation angle: The three or more x-ray images of the
implant are typically taken with a rotation motion of the
C-arm. Some earlier work had made certain assumptions on
the path of the C-arm, while some other work used orthogo-
nal images to do the reconstruction. It is desirable to not
have any constraints on how the images are taken. Moreover,
in a clinical setting the C-arm would have only a limited
mobility inside a 25° cone around the AP axis. Thus, it is
necessary to validate an algorithm to the angular separation
between the images. We tested the algorithm on various data
sets with images taken on a cone around the AP axis. The
implant was kept close to the center of the cone, which was
in proximity of the iso-center. The cone angle was varied
from 5° to 85° in steps of 5°. Six images were taken on each
cone and all 20 three-image combinations used. Seed density
was varied from 1.8 to 2 seeds/cc, prostate volume from
45 to 55 cc, and segmentation error was constant at 0.5 mm.

Averaged results from a total of 77 400 data sets are plot-
ted in Fig. 8�b�. Mean matching rate is fairly constant re-
maining always over 99%. There does not seem to be any
variation in % matching due to a variation in the angular
separation of the images. Thus it can be concluded that
MARSHAL is robust to image-separation, and any three im-
ages in the available workspace should suffice. It should be
noted however that, though MARSHAL can match the seeds
correctly it does not have a bearing on RE, which for each
seed will be a function of cone angle, C-arm tracking and
seed segmentation. Thus a larger image separation is desired
since it improves RE.

C-arm pose tracking: The accuracy of C-arm tracking
has a definite effect on the ability to correctly match the
seeds. We separately evaluate the performance of MAR-

SHAL to errors in C-arm translation and rotation. Statisti-
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cally uncorrelated pose errors were added to all three images.
Errors in translation varied from 0 to 5 mm in steps of
0.5 mm, while in rotation varied from 0° to 5° in steps of
0.5°. It was observed in our fluoroscope tracking �FTRAC�
fiducial that translation errors in depth are always signifi-
cantly greater than those parallel to the plane25 �by a factor
of at least 5�. This statistical bias in translation was incorpo-
rated in the generation of the datasets. There was no signifi-
cant bias observed in the rotation errors.

Averaged results for translation and rotation from a total
44 000 data sets are shown in Figs. 8�e� and 8�f�, respec-
tively. It can be noted that translation errors up to 3 mm can
still correctly match over 99% of the seeds. This quickly
drops to 95% when the error reaches 5 mm. When compared
to translation, MARSHAL is more sensitive to errors in ro-
tation. Errors up to 1.5° in rotation correctly match over 99%
on the seeds, with the performance dropping quickly when
the error is greater than 3°. It can be concluded that
MARSHAL is accurate and robust when the C-arm is tracked
to an accuracy of 3 mm in translation and 2° in rotation. This
is significantly larger than accuracies offered by the FTRAC
�0.56 mm in translation and 0.33° in rotation�25 or other
fiducials.34

C-arm calibration: Quantitative fluoroscopic reconstruc-
tion requires accurate calibration of the C-arm imaging
model parameters. Since the parameters vary from pose to
pose, this is typically done for every pose from which the
image is taken. The five intrinsic camera parameters are the
pixel sizes �two parameters� and the 3D location of the x-ray
source with respect to the image �three parameters�. Since
pixel sizes are fixed throughout the life of the C-arm, we
evaluate MARSHAL only with respect to the focal spot. In-
dependent and uncorrelated calibration errors of up to
20 mm were added to all three images, and the averaged %
matching from 102 500 data sets are plotted in Fig. 8. It can
be seen that the matching rate stays practically at about
100%. Thus MARSHAL is robust to C-arm calibration.
These results triggered us to question the relevance of C-arm
calibration in brachytherapy, leading to both theoretical and
experimental bounds on the error.29

C-arm image distortion: Most C-arms exhibit a signifi-
cant amount of nonlinear distortion in the images. Moreover,
the amounts of distortion vary with pose, time, and location.
Distortion being a global and nonlinear transform, consis-
tently shifts the seed coordinates in the image, adding an
error to any algorithm that relies on epipolar constraints.
Thus distortion correction needs to be accommodated for in
every image, which is a cumbersome process. If any match-
ing algorithm is stable in the presence of distortion, then a
one-time distortion correction procedure might also suffice.
MARSHAL solves the matching problem globally, as com-
pared to decreasing the complexity to smaller epipolar con-
straint based subsets, and is well suited to work on distorted
data sets.

MARSHAL was tested for sensitivity to distortion. A ran-
domly generated fifth degree radial distortion function was
used to distort each image, and the matching computed on

this data set. The implants were not confined to be in the
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center of the image. Averaged % matching from 27 500 data
sets are plotted against the mean image-distortion in Fig. 8.
Even with 15 mm distortion errors, % matching is above
95%. Average image distortion of up to 5 mm matches over
99% of the seeds correctly. Thus MARSHAL seems to be
fairly robust to moderate distortion errors. Again, it fares
well since it solves the matching problem as a global com-
binatorial optimization. Similar results are also available
from phantom experiments in Sec. III D.

C. Phantom experiments

After the simulations, experiments were conducted on a
precisely fabricated seed phantom, constructed using acetol.
The FTRAC fiducial25 was used to track the C-arm �accuracy
of 0.56 mm translation and 0.33° rotation�, and was attached
to the seed phantom as shown in Fig. 9. The seed phantom is
comprised of twelve 5-mm-thick slabs, each having at least a
hundred holes with 5 mm spacing. Any implant configura-
tion with accurately known seed positions �in the FTRAC
frame� can be created. Unfortunately there was about 0.5°–1°
rotational error in the assembly of the attachment, leading to
an error of about 0.5 mm in the ground truth estimates. Thus
we expected additional error even before doing the experi-
ments. The phantom is otherwise highly accurate. The seed
density was kept constant at about 1.56 seed/cc. The number
of seeds �and hence prostate size� was increased from 40 to
100 in steps of 15. For a given constellation, six images
within a 20° cone around the AP axis were taken using an
uncalibrated Philips Integris V3000 fluoroscope. The ob-
tained images were dewarped using the pin-cushion test. Ac-
curate ground truth for matching was computed by utilizing
the known 3D seed locations.

Matching was achieved using MARSHAL, followed by
performance analysis. MARSHAL was evaluated for cases
when two, two and a half, three, four, or more images are
used. Robustness is further evaluated by using distorted im-

FIG. 9. �a� An image of the seed phantom attached to the FTRAC fiducial. T
slabs each with over a hundred holes. �b� A typical x-ray image of the com
ages. For each implant, six images from various poses were
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taken, and a number of combinations are created by choosing
a different set of images to reconstruct the seeds. The results
are averaged when displayed in Tables II and III.

Two images: The results for MARSHAL with two im-
ages, evaluated on 75 combinations �15 for each data set�,
are summarized on the left side of Table II. Two-image
matching gives poor results, matching only about 2 /3 of the
seeds. The matched seeds reconstruct with an average RE of
1.17 mm, while the mismatched seeds reconstruct with an
average error of 27.2 mm, the maximum being 241.8 mm.
Though these results are completely unacceptable, MAR-
SHAL provides the best possible solution that can exist with
two images. Due to the various calibration and numerical
errors, alternate constellations have significantly lesser error
than the correct one. This is evident from the table where we
can see that the average PE for mismatched seeds is only
0.22 mm �0.15 mm RA�, but the seeds are deviated by a
large value of 27.2 mm in 3D. Thus with two images,
MARSHAL produces the best possible �least cost� matching
that can exist.

Two and a half images: To understand better how infor-
mation from a third image facilitates seed matching, partial
information from a third image was added. Instead of all
three, it runs only one bipartite matching, while still using
Eq. �3� to compute Cij. Since the third image is not com-
pletely used and this exercise is only toward our understand-
ing, we say that only two and a half images are used. The
results from 300 combinations �5� 6C2�4—the choice for
the third image has four options� are shown on the right side
of Table II. This little information from the third image is
sufficient to correctly match 98.3% of the seeds. The mean
RE for matched seeds is 0.88 mm, while that of mismatched
seeds is 7.68 mm, the maximum for all combinations being
68.2 mm.

Thus when a third image is used, the number of good
triplets decreases from O�N5/3� to O�N4/3�, providing a huge

ed phantom can replicate any implant configuration, using the twelve 5 mm
ion.
he se
binat
improvement in performance. Though the matching rate is
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good, RE for mismatched seeds is still rather high �note that
PE for mismatched seeds is low�. The reason is that in spite
of being very close, the projection of the solution of the
tripartite problem is not exactly the same as the solution of
the bipartite problem. The proximity in the solution is evi-
dent from the low PE of 0.24 mm for the few mismatched
seeds ��3% �. Thus by including some combinatorial con-
sistency checks, we should be able to match all the seeds.
This intuition is realized fully in MARSHAL.

Three images: Averaged results from a total of 100 com-
binations �5� 6C3� are shown on the left side of Table III.
98.5% of the seeds matched perfectly. The 3D RE for
matched seeds has a mean of 0.63 mm and STD 0.24 mm.
The % of mismatched seeds is a strong upper-bound due to

TABLE II. MARSHAL performance on phantom data. Two-image seed m
mismatched with high reconstruction error, yet low projection error and re
performance �right�. Most seeds match, though the reconstruction error is hi
respectively.

Two images

40 55 70

Matching
rate �%�

Match 76.5 75.8 68.3

Reconstruction
error �mm�

0.96 0.92 1.21

Projection
error �mm�

0.19 0.12 0.15

Reconstruction
error �mm�

Mismatch 23.9 27.8 28.2

Projection
error �mm�

0.22 0.19 0.18

Reconstruction
accuracy �mm�

0.15 0.13 0.13

TABLE III. Performance on phantom data. Using three images gives exce
reconstruct with a low error. Using four images gives similar results �right�

Three images

40 55 70

Matching
rate �%�

Match 97.6 100 98.0

Reconstruction
error �mean�

0.60 0.48 0.63

Reconstruction
error �STD�

0.21 0.23 0.25

Reconstruction
error �mean�

Mismatch 0.73 ¯ 0.76

Reconstruction
error �worst�

1.18 ¯ 1.03

Reconstruction
error �relative�

All 0.28 0.29 0.35
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the overlap problem �Sec. II H�. This is evident from the RE
for mismatched seeds, which has a mean value of 0.91 mm,
only a little higher than correctly matched seeds. The average
worst case error was 1.32 mm, the error being lower for
smaller implants. As mentioned earlier, the ground truth of
the seed locations has a small rotation error. To counter this,
we computed relative RE, which removes any constant trans-
lation and rotation offset between the ground truth and re-
constructed seeds, and measures any variation in the shape
of the reconstructed implant. It can be seen that relative RE
is significantly lower, standing at a mean value of 0.32 mm.
Thus there is a constant shift of about 0.3 mm �due to the
error in ground truth� for the whole implant, and an addi-
tional error of 0.32 mm for each seed. The absolute worst

g is completely erroneous �left�, with over a quarter of the seeds being
ruction accuracy. Adding just little information from a third image boosts
r the few mismatched seeds. A total of 75 and 300 combinations were used,

Number of seeds

Two and a half images

100 40 55 70 85 100

9 53.1 98.3 99.8 98.3 98.0 97.2

7 1.59 0.83 0.73 0.88 0.89 1.09

5 0.19 0.20 0.16 0.17 0.18 0.24

0 33.0 2.35 13.2 4.32 8.38 10.2

2 0.27 0.22 0.29 0.16 0.26 0.26

5 0.19 0.13 0.09 0.12 0.16 0.15

results �left�, with most of the seeds being matched. Mismatched seeds
tal of 100 and 300 combinations were used, respectively.

Number of seeds

Four images

100 40 55 70 85 100

5 98.5 99.2 100 98.7 98.9 99.0

0 0.76 0.59 0.48 0.63 0.69 0.75

4 0.25 0.21 0.23 0.25 0.24 0.25

4 1.30 0.67 ¯ 0.65 0.64 1.14

0 1.96 0.91 ¯ 0.86 0.77 1.58

0 0.39 0.28 0.29 0.35 0.29 0.38
atchin
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case error was 3.29 mm, which seems to have a likelihood of
about 1 in 75, as indicated from our data.

Four or more images: To seek further improvement, 300
combinations �5� 6C3�3� using four images were run, the
results of which are summarized on the right side of Table
III. It can be seen that, on average, 99.2% of the seeds match
perfectly. RE for matched seeds still has a mean of 0.63 mm
and STD 0.24 mm. While RE of mismatched seeds has de-
creased to 0.78 mm and the average worst case error to
1.03 mm, the relative RE is still 0.32 mm. Thus we can see
that adding a fourth image does not significantly improve the
mismatched error, predominantly because three-image
matching leaves very little scope for it. It should be noted
that due to this redundancy, a fourth image is a great source
for validation during the procedure.

Similar to using a fourth image, using a fifth or sixth
image has only a little improvement in performance. Average
results from 300 combinations indicate that using five im-
ages perfectly matches 99.2% of the seeds with the average
worst case error dropping to 0.9 mm. Six images images
match 99.4% with the average worst case error being
0.85 mm. Thus three images appears to achieve the correct
balance between number of images used and accuracy ob-
tained, though it should be noted that using more extra im-
ages would decrease RE and might also aid in the hidden
seed problem.

It should be noted that %-matching implies a normaliza-
tion by the number of seeds. Using four images, the 100-seed
implant seems to perform similar to the 40-seed implant,
matching around 99% of the total seeds. On the contrary, the
100-seed implant mismatches about 1 seed/implant while the
40-seed implant mismatches only 0.3 seeds/implant. In a
similar manner, though the 55-seed implant matches 100% of
the seeds, it does not imply that all 55-seed implants would
always correctly match. Depending on a host of uncontain-
able factors like errors in tracking, segmentation, noise, etc.,
an erroneous variation of about 1 seed/implant should typi-
cally be expected while studying any pattern.

D. Distorted images

MARSHAL addresses the problem globally as a combi-
natorial optimization problem, as compared to locally by us-
ing only epipolar constraints. Thus it is well-suited to evalu-
ate the correspondences even in the presence of nonlinear
effects like image distortion. Well-separated image positions
�with distortion� were shown to match 98.5% of the seeds
even on a 100-seed implant.67 To further validate the robust-
ness, we tested it for 700 combinations of distorted C-arm
images. These combinations were chosen, so as to not re-
strict the images in any way, apart from being inside a 25°
cone around the AP axis. Thus the images can be very close
to each other and not well separated. Using four such images
perfectly matching 93.2% of the seeds on an average, per-
forming superior to three images that matched only 86.3%.
Five and six images perfectly matched 95.4% and 96.2% of
the seeds, respectively. The performance can be further im-

proved by keeping the seed projections closer to the center of
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the image. It can be observed from Fig. 9 that the seed phan-
tom is not in the center of the image, and thus suffers from a
considerable amount of distortion.

Thus, if the prostate size is small ��50 cc�, then
MARSHAL with three distorted images can match over 97%
of the seeds match perfectly. This means that it flips about
2–3 seeds on average, correctly matching the rest. Alterna-
tively, if the prostate is a little larger, then using more images
that are well-spaced can still match about 98% of the seeds.
Average RE for the whole implant stood high at 2.65 mm,
while relative RE was low at 0.54 mm. The relative RE for
the mismatched seeds was about 1.4 mm, while the absolute
RE was 3.9 mm. Thus most seeds matched correctly, though
the reconstructed implant is shifted in space by about 2 mm
due to image distortion. The mismatched seeds have an ad-
ditional error of 1 mm after the shift. Similar patterns were
also observed on synthetic data in Sec. III B. Though we
have not encountered any similar analysis in the literature,
we conjuncture that since those algorithms rely on epipolar
lines that are distorted nonlinearly, they should be affected
much more severely than MARSHAL.

It should be noted that though theoretically the recon-
structed implant should be skewed, practically it is of the
same shape. This is evident from the marginal increase in
relative RE by only 0.23 mm. Thus the implant reconstructed
from distorted images can be practically shifted by about
2 mm to overlap with the correct location. The reason for the
absence of skew is that even though distortion is always
nonlinear, the area that the implant occupies in the image is
small. This results in an approximately linear shift of the
seed coordinates in the image. Furthermore, 3D reconstruc-
tion from multiple images also reduces this error. As a con-
sequence, the reconstructed implant is practically shifted in
space in proportion to the amount of distortion.

Thus image distortion can potentially be either corrected
using a constant function, or completely avoided if the
amount is low. It should be noted that for this to work the
implant should not be large and some mechanism needs to
correct for the consistent shift in the x-ray to TRUS registra-
tion step. Moreover, additional images can provide signifi-
cant improvement and reliability.

E. Run-time

MARSHAL has a run-time complexity of O�N3� for any
number of images, which makes it extremely fast even on
large size implants. The unoptimized MATLAB code �Pen-
tium4 3.2 GHz, Windows 2000, 1 Gbyte RAM� on a 100-
seed implant with a seed density of 1.8 seeds/cc ran in 1.6 s.
This run-time is typical of most tested implants, indicating
that an optimized C�� implementation could in practice run
in near real-time. Thus run-time for MARSHAL seems to be
sufficient for intraoperative dose, especially when compared
to the time required for automatic segmentation, which typi-
cally requires a few seconds. Though it was never observed
in any of the thousands of test data sets, we point out that
there can exist �theoretically� many long loops, which can

potentially slow down MARSHAL.
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IV. SHORTCOMINGS AND FUTURE WORK

The underlying assumption of this paper has been that all
the seeds are segmented and their image coordinates known.
Though excellent segmentation algorithms have been
proposed,15,35,36 they are capable of only segmenting seeds
that are fully visible. Thus the coordinates of any hidden
seeds �due to an overlap� will not be available, resulting in
varying number of segmented seeds in each image. This is an
issue of utmost importance and clinical practicality. While
some researchers have reported the number of hidden seeds
to be between 7% and 45% of the total seeds,35 others have
noticed only about 2%–3%68 in their clinical data. Neverthe-
less, no solution can be clinically viable until it explicitly
tackles this problem.

In some of the suggested solutions, fast-CARS was
extended35 to tackle this, but the algorithm reconstructed a
greater number of seeds than were actually inserted. Another
variant of fast-CARS was proposed68 by ordering the seeds
using the epipolar constraints. Unfortunately, the algorithm
“based on epipolar geometry requires co-planar imaging to
perform reconstruction” and “cannot reconstruct undetected
seeds if they exist in the same search restriction band.” Sig-
nificant works as they are, the problem merits further re-
search. An intensity-based method using tomosynthesis69 has
also been proposed. Unfortunately in their current implemen-
tation, they require a rather large number of images to
achieve accurate reconstruction. Another method based on
Hough trajectories70 has been proposed to solve this prob-
lem, but again requires a large number of images. Neverthe-
less, these methods could lead to promising results in the
future.

Though MARSHAL does not yet tackle hidden and spu-
rious seeds, we believe that the proposed mathematical
framework for seed matching is comprehensive. It can be
extended to solve these problems in a more formal frame-
work of combinatorial optimization in contrast to the previ-
ously mentioned heuristic methodologies. This formal ap-
proach is expected to provide a better control on the behavior
of the algorithm, potentially offering a decrease in depen-
dence on rules that might change behavior from one data set
to another and an increase in robustness. Moreover, the com-
plete problem can be tackled as a whole �global optimiza-
tion� as compared to looking at one seed or a group of seeds
with heuristic rules �local optimization�. Though it might be
argued that the full problem should be broken down into
independent subset of seeds with each subset solved sepa-
rately, this might not be feasible in the generic case. If the
tripartite problem could be broken down into a set of smaller
min-cost tripartite problems, then it would no longer be NP-
hard. Thus any solution should try to address the problem as
a whole.

The basics of our approach will be to redefine the problem
into a formal framework. Since we have proved in this pub-
lication that the global optimum is not attainable by any
polynomial algorithm, we will project the full problem into
multiple lower dimensional problems involving all the seeds.

Each of these subproblems would be casted into the network
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flow framework and the global optima for each lower dimen-
sional problems would be achieved in polynomial time. The
solutions to the subproblems would later be integrated to-
gether to create the final solution. The predominant differ-
ence from the current framework will be that instead of
forced unitary flows, variable flows will be handled. Thus all
the seeds will be handled in unison and solved globally. In
addition, theoretically assured bounds on the performance of
the algorithm are currently being worked out. A combination
of the above-mentioned promises to lead to an implementa-
tion that could potentially be used clinically.

V. CONCLUSION

In contrast to previously proposed methods, we have for-
malized the seed-matching problem. We have proposed an
algorithm, abbreviated as MARSHAL. It typically runs with
O�N3� time complexity with any number of images. Using
three images, it matched perfectly over 98.5% of the seeds at
a density of 1.56 seeds/cc. MARSHAL in combination with
the FTRAC fiducial can reconstruct the seeds with a mean
error of 0.63 mm and a STD of 0.24 mm. The mismatched
seeds had a mean error of 0.9 mm, while the most mis-
matched seed in each implant had an average error of
1.32 mm. The worst error across all data sets was 3.29 mm
and has a low likelihood of 1 in 75 implant cases. Moreover,
relative reconstruction error was 0.32 mm, which reflects the
deviation in shape of the reconstructed implant when com-
pared to the true implant.

The algorithm performs well for distorted images too,
matching over 97% of the seeds for small implants. The
simulation experiments indicate that MARSHAL is not sen-
sitive to �a� image separation, �b� seed density, �c� number of
seeds, and �d� C-arm calibration. It is also acceptably robust
to �a� segmentation, �b� C-arm pose, and �c� distortion. It can
reconstruct an implant when three of more images are used,
with a robustness, precision, and speed that promises to be
sufficient to support intraoperative dosimetry in prostate
brachytherapy. Though we validate it only for brachytherapy,
MARSHAL is sufficiently generic to be used for establishing
correspondences across many synergistic applications.
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C-arm fluoroscopy is ubiquitous in contemporary surgery, but it lacks the ability to accurately
reconstruct three-dimensional �3D� information. A major obstacle in fluoroscopic reconstruction is
discerning the pose of the x-ray image, in 3D space. Optical/magnetic trackers tend to be prohibi-
tively expensive, intrusive and cumbersome in many applications. We present single-image-based
fluoroscope tracking �FTRAC� with the use of an external radiographic fiducial consisting of a
mathematically optimized set of ellipses, lines, and points. This is an improvement over contem-
porary fiducials, which use only points. The fiducial encodes six degrees of freedom in a single
image by creating a unique view from any direction. A nonlinear optimizer can rapidly compute the
pose of the fiducial using this image. The current embodiment has salient attributes: small dimen-
sions �3�3�5 cm�; need not be close to the anatomy of interest; and accurately segmentable. We
tested the fiducial and the pose recovery method on synthetic data and also experimentally on a
precisely machined mechanical phantom. Pose recovery in phantom experiments had an accuracy
of 0.56 mm in translation and 0.33° in orientation. Object reconstruction had a mean error of
0.53 mm with 0.16 mm STD. The method offers accuracies similar to commercial tracking sys-
tems, and appears to be sufficiently robust for intraoperative quantitative C-arm fluoroscopy. Simu-
lation experiments indicate that the size can be further reduced to 1�1�2 cm, with only a mar-
ginal drop in accuracy. © 2005 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2047782�
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I. INTRODUCTION

C-arm fluoroscopy is the most widely used intraoperative
imaging modality in general surgery �some of the prominent
works being Refs. 1–8�, but it presently lacks the ability for
robust and easy quantitative guidance.9 Quantitative
fluoroscopy-guided surgery needs to solve four major prob-
lems: �1� C-arm image distortion; �2� the calibration of im-
aging parameters; �3� pose recovery or tracking; and �4� reg-
istration to imaging modalities. The first two are well-studied
problems in the literature.1,3,9 On the other hand, pose recov-
ery on unencoded C-arm machines is a major technical prob-
lem that presently does not have a clinically practical solu-
tion in many areas of application. In this paper, we propose a
solution to accurately estimate the pose by using a radio-
opaque fiducial. Moreover, it can also register the x-ray im-

ages to other imaging modalities.
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The history of using radio-opaque fiducials to solve for
the C-arm pose starts as early as 1987,10 where 16 spherical
beads in a known configuration were introduced in the region
of interest. Theorems from projection geometry were used to
reconstruct the C-arm pose, calibration parameters and target
details. This was later followed by other bead-based
fiducials2,11–13 for solving both the problems of a C-arm pose
and calibration �a small survey14�. The number of beads var-
ied from 20 to 613, with the patient sometimes fitting inside
them. Though the accuracies were acceptable �0.5−1 mm�,
the fiducials tended to be �a� too large; �b� cumbersome to
use in a clinical setting; �c� interfering with the anatomy in
the image; and �d� nontrivial to segment. A smaller and well-
encoded fiducial can solve these problems efficiently.

Off-the-shelf tracking devices, as they became available,
were a natural choice to simplify the problem. In current

commercial C-arm fluoroscopy surgical navigation systems,

31850…/3185/14/$22.50 © 2005 Am. Assoc. Phys. Med.



3186 Jain et al.: Fluoroscope Tracking „FTRAC… 3186
the x-ray detector is localized in room coordinates by some
auxiliary optical tracker15,16 or electromagnetic �EM�
tracker.17 Unfortunately, auxiliary trackers sometimes be-
come impractical for various reasons. They are expensive
and add to the complexity of the operating room since they
require an additional calibration step. Optical trackers require
a line of sight, which becomes cumbersome in a clinical
setting and requires an alteration in the standard workflow.
The EM trackers can successfully overcome this issue, but
become susceptible to field distortion from metal objects like
surgical tools or the C arm itself, compromising on accuracy.
This has lead some recent researchers to prefer fiducial-based
tracking. In a recent publication,18 the authors delineate the
above problems and also say that using optical trackers re-
duces the useful imaging volume of the fluoroscope and po-
tentially compromises the achievable accuracies. Despite us-
ing an optical tracker to track their surgical tools, they
explicitly choose to not track the C arm using the tracker but
instead use a radio-opaque fiducial. Their system has been
fairly successful for various surgeries and has been in clini-
cal use for the last four years. Similar preferences can be
observed in other recent publications as well.3,19–22

To make the fiducials feasible, recent publications have
reported smaller fiducials by compact bead placement. It
should be noted that this increase in clinical friendliness by
decreasing the size was achieved at the cost of a decrease in
accuracy. The typical number of beads were reported to be
between 6–28,18–22 achieving translation accuracies ranging
from 1–3 mm and orientation accuracies around 1°–2°. The
variation in accuracies is governed by both bead
configuration19 and implementation20 choices. Increasing the
number of beads greater than 6 provides little improvement
in the accuracy.19 Moreover, nonlinear optimization fares far
superior when compared to linear methods.20,23 Thus, from
recent publications, it seems that a 1 mm error in translation
and 1° error in rotation is probably the best that bead-based
fiducials can achieve. The reason for this is that accurate
segmentation of beads in the x-ray image is nontrivial. A
2 mm diameter radio-opaque bead would project as an el-
lipse with a 12 pixel long axis. The center of the ellipse does
not necessarily correspond to the center of bead, contributing
at least 1–2 pixel segmentation error. Moreover, a further
decrease in fiducial size would greatly compromise the
accuracy.24

Methods to accommodate for and decrease the effect of
such systematic biases25 are studied by the computer vision
community during their camera calibration procedures. Un-
fortunately, the improvement is not substantial. Moreover,
point-based registration methods are known to be sensitive to
segmentation errors.24 Thus a totally new approach toward
fiducial design will be required. Moreover, automatic seg-
mentation and establishing correspondences between the fi-
ducial beads and their projections in the image is itself a
nontrivial task for arbitrary positions of the fiducial. In a
synergistic problem, the end effector of a surgical robot was
registered to a C arm using line fiducials3 mounted on the
robot’s tool holder. The idea was to register the x-ray image

to a robot, in order to locate the target anatomy in the coor-

Medical Physics, Vol. 32, No. 10, October 2005
dinate frame of the surgical robot. Although their helical fi-
ducial did not allow for sufficiently accurate and robust pose
recovery, it was an important effort that inspired our work.
Our present contribution to the state of the art is the devel-
opment of a novel fiducial system and its mathematical
framework. The fiducial uses ellipses and straight lines in
addition to points. It offers a decrease in size, an enhance-
ment in accuracy and robustness in C-arm pose recovery,
allowing for precise object reconstruction. Some preliminary
studies have been published earlier,21,26 while we present the
complete mathematical framework, results and analysis in
this paper.

II. MATERIALS AND METHODS

Our solution to image-based pose recovery is to mount a
stationary fiducial in the field of the C-arm fluoroscope. The
fiducial, by design, encodes six degrees of freedom �DOF�
from a single image by creating a unique view from any
direction. The accuracy and robustness of pose recovery
would critically depend on the design and precise manufac-
turing of the fiducial. Software was created for segmentation
of the fiducial and for numerical optimization that deter-
mines the six-DOF transformation between the coordinate
frames of the C arm and the fiducial.

A. Fiducial design and manufacturing

For practical viability the fiducial should �a� be nonintru-
sive with small dimensions; �b� not corrupt image quality; �c�
not necessarily be close to the anatomy of interest; �d� be
easily/accurately segmentable from x-ray images; and �e�
have software that is robust, fast, and simple to use.

1. Choice of fiducial features

Geometric aspects of x-ray imaging are modeled using the
perspective projection model �Sec. II B�, under which we can
limit the choice of features to well-behaved features like
points, straight lines, ellipses, parabolas, helixes, and other
curves. Different features exhibit varying segmentation accu-
racies, each combination thus producing a fiducial with dif-
ferent characteristics. Segmentation is crucial, since it di-
rectly relates to achievable pose estimation accuracy. Image
processing algorithms can more accurately segment con-
strained �parametric� curves when compared to uncon-
strained curves, usually to a subpixel precision.

Projected point features have a high segmentation error25

��1–2 pixel� but make the pose estimation problem very
well constrained.27 Straight lines are not as well constrained
as points, but offer superior segmentation accuracies to
points. Linear methods are available for both features,28–30

but it should be noted that due to an inability to incorporate
all the rotation constraints, linear methods have been shown
to not fare as well as nonlinear methods.20,23 A helix is a
parametric curve that projects as a nonparametric curve with
nondifferentiable segments, leading to inaccurate segmenta-
tion, which makes pose estimation prone to errors.3 Alterna-

tively, ellipses, parabolas, and hyperbolas are conics that will
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always project as another member of the same family. The
proof of this is self-explanatory from Fig. 1. Moreover, since
the mean direction of the x-ray beam is near-orthogonal to
the image plane, we can, without loss of generality, assume
that the projection of all conics would be an ellipse on the
image plane. Parabolas and hyperbolas would project as
open ellipses, making segmentation prone to error. In com-
parison, a 3D ellipse will project as a closed ellipse in the
image, making it an ideal candidate feature.31,32 A 3D circle
is a special case of the ellipse.33–35 It should be noted here
that even though ellipses are easy to segment, exact linear
techniques for pose estimation from ellipses are not
available.36,37 Some authors have attempted to linearize pose
estimation using an ellipse,29 but not with high accuracy.

Thus we choose a combination of ellipses, straight lines,
and points as our primary features, balancing between accu-
racy and convergence. Ellipses make the algorithm more ac-
curate, points make it more robust, and lines will achieve a
bit of both.

2. Necessary and sufficient feature combinations

A combination of the above features can be used for pose
estimation. The number and placement of the features will
decide the robustness of the fiducial. It can be shown geo-
metrically that the correspondence of at least three points is
required for determining the pose of the fiducial uniquely.
Using the point-line duality, we can also conclude that a
minimum of three straight lines �not line segments but infi-
nite lines� is necessary to find the pose uniquely. A single 3D
circle limits the pose to four discrete symmetric choices,
along with an indeterminable rotation along the normal axis.
An ellipse is able to limit this to only 16 discrete positions.
Thus, an ellipse/circle along with a point, can uniquely en-
code the pose of the fiducial. Open curves like the helix,
parabola, and hyperbola can limit the pose to just two dis-
crete rotations.

Note that these are purely theoretical considerations and
using the bare minimum number of features will result in a

FIG. 1. The center of the cone is the x-ray source, while the base is the
image plane. The intersection of this plane with the cone is an ellipse. Any
3D curve combined with the x-ray source defines a unique cone, which
intersects the image plane as an ellipse. Any conic in general projects as
another conic under perspective geometry.
loss of accuracy. Inaccuracies in the imaging model coupled
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with image quantization errors, would make slight variations
from the actual pose produce nearly identical images. In
other terms, the Jacobian for image formation loses rank and
becomes singular. Singular matrices are undesirable because
they cannot be inverted, and indicate that the system has
become degenerate. Each feature has blind spots, near which
the Jacobian would be singular. Near-singular matrices are
theoretically invertible but numerically unstable, resulting in
large errors during matrix inversion. For example, the ellipse
projects as a straight line in its own plane, and hence the
Jacobian would be ill conditioned �near-singular� when the
actual pose is in the vicinity of this blind spot. Thus, the
placement of all the features should be such that a singularity
from one feature is cancelled by a good Jacobian from an-
other. This suggests that a highly redundant structure is
needed to accommodate a sufficient range of projection
angles and compensate for inevitable calibration and image
processing errors.

Our first motivating application is prostate brachytherapy
�Sec. IV�, where the fluoroscope has a limited view within a
25° cone around the AP axis. To tackle blind spot singularity,
we choose to arrange two noncoplanar ellipses 60° from each
other �Fig. 2�. When one ellipse projects with high eccentric-
ity, the other ellipse projects as a circle, forcing at least one
ellipse to encode strongly in any direction. We added three
line segments as features, further utilizing the endpoints of
the segments as six point features. To make it nonsymmetric,
three additional points were added at known distances along
the lines. Thus, one segment has four points, another has
three, while the third has just two. This fact is also used to
distinguish between the ellipses, which otherwise have the
same dimensions. These features constitute our fiducial,

FIG. 2. Images of the FTRAC fiducial �a� cylindrical sheath design; �b� wire
model; �c� photograph; �d� x-ray image.
which henceforth we shall refer to as the fluoroscope track-
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ing �FTRAC� fiducial. The features are placed carefully so
that the projection of radioactive seeds in the prostate does
not overlap with that of the fiducial, even when they are
beside each other. All the features of this fiducial are
mounted on the surface of a hollow cylinder, which remains
stationary. The diameter of the cylinder is 3 cm. Thus, all the
features fit inside a 3�3�5 cm volume.

3. Manufacturing

The design for the fiducial was refined by generating mul-
tiple rough prototypes from ABS �acrylonitrile butadiene sty-
rene� using an FDM �fused deposition modeling� rapid pro-
totype machine. The final fiducial design was then fabricated
from a acetol rod using a four-axis CNC �computer numeri-
cal control� mill, with the grooves of the fiducial geometry
machined into its surface to press fit 0.5 mm stainless steel
wires and 2 mm stainless steel beads. The cylinder was press
fit into a custom acetol mount that provided three mutually
orthogonal sets of mounting holes for attaching to an accu-
rate rotary table for validation.

B. Pose recovery mathematics

1. C-arm imaging

Geometric aspects of fluoroscopic imaging can be mod-
eled as a perspective transformation with five parameters—
focal length, image origin, and pixel size �Fig. 3�. The trans-
formation formula is given in Eqs. �1� and �2�; where
FF ,FX ,FI are the coordinate frames of the fiducial, x-ray
source, and the image, respectively; P is a 3D point; PF are
the homogenous coordinates of P in FF; p is the projection
of P on the image plane; pI are the homogenous coordinates
�in pixels� of p in frame FI;

XFF is the 4�4 rigid transfor-
mation matrix that transforms a point in FF to FX; IFX is the
3�4 perspective projection matrix; f is the focal length; O
= �ox ,oy� is the projection of the x-ray source on the image
plane �later referred to as the origin�; sx and sy are the pixel
sizes along the X and Y axes of the image,

pI = IF XF PF, �1�

FIG. 3. Projective geometry and notations for fluoroscopic imaging.
X F
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IFX = �− f/sx 0 ox 0

0 − f/sy oy 0

0 0 1 0
� ,

�2�

XFF= �r11 r12 r13 T1

r21 r22 r23 T2

r31 r32 r33 T3

0 0 0 1
�.

Assuming that the C arm is calibrated �IFX is known�, the
problem remains to estimate the pose of the fiducial �XFF�,
given the image. XFF consists of six independent
parameters—T1 ,T2 ,T3 are the translation parameters, while
�1 ,�2 ,�3 are the three Euler rotation angles along the x, y,
and z axes �which determine rij in Eq. �2� uniquely�.

In this framework, the exact solution is rendered nonlin-
ear and we use the iterative Newton’s optimization method to
solve it. We segment the fiducial from the image, solve the
correspondence problem using the nonsymmetry of the de-
sign, and then feed this to the optimizer. The optimizer as a
first step computes an expected image location of the fidu-
cial. It also computes a Euclidean-distance-based multidi-
mensional error function. It is assumed that at the correct
pose, this error is zero. A closed form of the Jacobian is
provided, to ensure quick and accurate convergence.

2. Error formulas for points, lines, and ellipse

The multidimensional error vector measures the Euclidian
distance �in the image� between the segmentation of the ob-
served projection of the fiducial, and that of the current pro-
jection. A segmentation algorithm for the current image is
not needed since the position of any feature in the current
image is computed directly using its 3D location on the fi-
ducial. The distance from each feature in the current projec-
tion, to its corresponding counterpart in the observed image,
constitutes one element in the vector. When all features
match perfectly, each element in the vector is zero.

The Euclidian distance for corresponding point features is
the difference in their image coordinates. Let �Xi

m ,Yi
m ,Zi

m� be
the coordinate of Pi in FF �model/FTRAC frame� and
�Xi ,Yi ,Zi� be its coordinates in FX. Let �xi ,yi� be the current
coordinates of pi in FI. pi is a function of the six parameters
��1 ,�2 ,�3 ,T1 ,T2 ,T3�, which we shall refer to by a rotation
matrix R and a translation vector T. Let �x̄i , ȳi� be the coor-
dinates of the observed point pi in the image. Since each
iteration of the method has its own rotation and translation
parameters, we shall refer to them by their iteration number k
as, Rk and Tk, with R0 and T0 being the initial estimate. � is
the error function. Under this notation, the current estimate
of the distance function for points can be written as

�xi = xi�Rk,Tk� − x̄i, �3�

¯
�yi = yi�Rk,Tk� − yi. �4�
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Note that the L2 norm of these two values is the exact
Euclidian distance between the two points, and that the op-
timizer minimizes the L2 norm of the vector.

There is no notion of the Euclidian distance between two
straight lines. Thus, we select a point on one straight line and
measure the distance of this point from the other straight
line. Any two points uniquely determine a line, and hence
they can be sufficient to measure the distance between the
straight lines. If the equation of a straight line in the image is
Ax+By+C=0, then the distance of �xi ,yi� from the line is

��xi,yi� =
Axi + Byi + C

�A2 + B2
. �5�

Any two points on the line segment can be used, but we
use the endpoints for robustness. A similar technique can be
used for an ellipse, but no simple closed-form formula exists
for the Euclidian distance of a generic point from an ellipse.
In fact, this distance is one of the solutions to a fourth degree
polynomial,38 from which the minimum distance solution has
to be chosen. We derive an approximation that works well
when the point is not too far away from the ellipse. The
general equation of an ellipse �conic� is PTMP=0,

�x y 1�� A B/2 D/2

B/2 C E/2

D/2 E/2 F
��x

y

1
� = 0, �6�

which can be rotated, translated, and scaled to give
PTFTMFP=0�PTM�P=0�,

�x y 1��1/a2 0 0

0 1/b2 0

0 0 − 1
��x

y

1
� = 0, �7�

where a ,b are the length of the major and minor axes. PTMP
is a good distance metric since it is rotation and translation
invariant. Unfortunately, it is a nonlinear metric but can be
scaled near the ellipse boundary to give an approximate Eu-
clidian distance. Using Eq. �7�, the scale factor after some
first-order approximations turns out to be K=ab�AC
−B2 /4� /2�a2+b2 det�M�. The final distance function from
any point to the ellipse is shown in Eq. �8�. Theoretically, a
minimum of 5 points are required to localize an ellipse ex-
actly, though we use 12 for robustness,

��xi,yi� = KPTMP

=
ab

2�a2 + b2

�AC − B2/4�
det�M�

�xi yi 1�

�� A B/2 D/2

B/2 C E/2

D/2 E/2 F
��xi

yi

1
� . �8�

3. Jacobian calculation

The error/distance metric is a 48-dimensional vector �18

from 9 points, 6 from 3 lines, and 24 from 2 ellipses�, the
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zero value of which is computed using the Newton’s method.
To quickly find this global minimum is a practical challenge.
Exact knowledge of the closed form Jacobian of this vector
makes a significant improvement in speed and accuracy. The
Jacobian is a matrix of size 48�6, and of the form ��i /�P j,
where i=1¯48, j=1¯6; and P j representing the �six� pose
parameters. We first compute the building blocks �xi /�P j and
�yi /�P j, for later use in the Jacobian computation. From Eqs.
�1� and �2�, we derive

	xi

yi

 = �

− fXi

sxZi
+ ox

− fYi

sxZi
+ oy

�
= �−

f

sx

r11Xi
m + r12Yi

m + r13Zi
m + T1

r31Xi
m + r32Yi

m + r33Zi
m + T3

+ ox

−
f

sy

r21Xi
m + r22Yi

m + r23Zi
m + T1

r31Xi
m + r32Yi

m + r33Zi
m + T3

+ oy
� . �9�

From here, straightforward manipulations lead to the tran-
snational Jacobian,

�xi

�T1
=

− f

sx

1

Zi
,

�xi

�T2
= 0,

�xi

�T3
=

fXi

sxZi
2 ,

�10�
�yi

�T1
= 0,

�yi

�T2
=

− f

sy

1

Zi
,

�yi

�T3
=

fYi

syZi
2 .

To obtain the rotational Jacobian, we first estimate
�Pi

m /�� j, which we use to estimate �Pi /�� j, which will give
us �xi /�� j and �yi /�� j. Here Pi is treated as a vector in space
�Pi

m /�� j can be obtained geometrically as a cross-product, as

FIG. 4. The derivative of a point vector P with respect to a direction n is
given by the cross-product of n and P.
illustrated in Fig. 4,
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�Pi
m

��1
= �1,0,0�T Ã Pi

m,

�Pi
m

��2
= �0,1,0�T Ã Pi

m, �11�

�Pi
m

��3
= �0,0,1�T Ã Pi

m.

�Pi
m /�� j is defined in FF. It needs to be rotated to change

it to frame FX,

�Pi

�� j
= R�Pi

m

�� j

. �12�

From Eq. �9�, �xi /�� j and �yi /�� j can be derived as

�xi

�� j
=

− f�Zi
�Xi

�� j
− Xi

�Zi

�� j
�

sxZi
2 ,

�yi

�� j
=

− f�Zi
�Yi

�� j
− Yi

�Zi

�� j
�

syZi
2 .

�13�

Using Eqs. �3�–�5�, �8�, �10�, �12�, and �13�, we can derive
the Jacobian for the point, line, and ellipse features as

���xi�
�P j

=
�xi

�P j
,

���yi�
�P j

=
�yi

�P j
,

�� j

�P j
=

1
�A2 + B2�A

�xi

�P j
+ B

�yi

�P j
� , �14�

��i

�P j
= K��2Axi + Byi + D�

�xi

�P j
+ �2Cyi + Bxi + E�

�yi

�P j
� .

4. System of equations and update formula

Thus, for each feature distance, a first-order approxima-
tion can be written as



j=1

3 � ��i

�Tj
�Tj +

��i

�� j
�� j� = �i, �15�

which can be rewritten as

J�P = � , �16�

where J is the Jacobian, P are the six parameters, and � is
the multidimensional error function. The method proceeds by
computing new estimates for R and T, and iterates until �
becomes acceptably small. The new estimates for P are ob-
tained by inverting Eq. �16�. Given the current estimate Rk

and Tk, and corrections �Tk and ��k, the new estimates Rk+1

and Tk+1 can be computed as follows:

�1� 	Rk+1 Tk+1

0 1

 = 	Rk Tk

0 1

	�Rk �Tk

0 1

;
�2� Tk+1 = Tk + �Tk, �k+1 = �k + ��k;
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�3� Tk+1 = Tk + �Tk, Rk+1 = Rk�Rk.

The third update formula is most robust, while the first
two are not stable, as they are extremely sensitive to numeri-
cal errors. It is also important that the order of ��1, ��2,
and ��3 should not be changed while generating �Rk. Al-
ternately, some other representation for the rotation matrix
can also be used.

5. Least-square robustness

The fiducial rotation is measured in radian while transla-
tion is measured in mm, giving rise to numerical instabilities
during the inversion of the Jacobian in Eq. �16�. The inver-
sion process can further worsen if the Jacobian is close to
singularity. Besides, the assignment of different weights to
different features may be desired, since within the region of
interest some features will be statistically more robust than
others. These problems are solved by using parameter and
task variable scaling,39,40

G�JH��H−1�P� = G� . �17�

H scales the parameter space without changing the least-
squares solution, since H can be chosen to make JH better
conditioned than J. The H matrix can be constructed by us-
ing the parameter covariance matrix, for which we need an
initial estimate of the solution and the standard deviation of
each parameter. Column scaling41 is another popular method
when no a priori information is available. Unfortunately, this
can have a problem if the parameters are poorly identifiable42

in some poses. This is solved using the external scaling
method, which does a column scaling on the most conserva-
tive estimates �the worst possible Jacobians�. We ran 50 000
pose simulations to determine our H matrix using this
method.

The G matrix is used for task variable ��� scaling, which
can be computed by the Gauss–Markov estimate by using a
good estimate of the covariance matrix of the error function.
In the absence of this matrix, another statistical approxima-
tion is to use a diagonal matrix, with each entry being the
reciprocal of the standard deviation of that error element.
This would make the L2 norm a reasonable measure of the
size of the least square error vector. We computed our G
matrix using data from the same 50 000 pose simulations
that we ran earlier.

6. Final optimization

The above framework was implemented using Newton’s
nonlinear optimization. We noticed that the optimization al-
ways converged in less than 25 iterations. The exit condition
was defined as 50 iterations or a plateau in the error curve,
whichever came later. We also incorporated some basic
checks on the final answer to remove any mirror solutions.
Other extraneous solutions can also act as a local minimum,
in which case the initial estimate is perturbed a little to yield
the correct convergence. A robust pose recovery algorithm

was developed, by building on this optimization.
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7. Robust pose recovery algorithm

To make the pose recovery more robust, we have de-
signed a two-phase pose recovery algorithm. The basic pose
recovery algorithm is outlined in Fig. 5. Like all optimiza-
tions, this one is prone to fall into a local minima, from
which it may not be able to recuperate. This is resolved by
running the algorithm multiple times from various initial es-
timates for the pose. This approach is able to reduce the
probability of failure exponentially. In a loose sense, if
p��0.3� is the probability of failure in any given iteration,
then the probability of success after N independent runs is
1− pN, which is sufficiently close to guaranteed success.
Moreover, to make pose recovery more accurate, we use the
observation that point features, though inaccurate, converge
more reliably �see Table I�. Thus, the basic algorithm runs 25
times using only the point features, from which we obtain a
very good guess for the final pose. This is used as the initial
estimate and now the basic algorithm runs another 25 times
using all features. Though the number of iterations can be cut
to one-fifth without compromising on the convergence, the
extremely fast run time allows us to add a safety bracket by
increasing the number of iterations. Figure 6 outlines the
algorithm. This robust algorithm ran for tens of thousands of
poses �spanning the complete workspace� without failure.

FIG. 5. The basic pose estimation algorithm.

TABLE I. For the basic pose algorithm, different feature combinations give
varying errors and percentage failures.

Points, lines and ellipse
combinations

Translation
�nm�

Rotation
�°�

Failures
�%�

6P+3L+2E 1.82 0.89 31.40
6P+2E 1.96 1.16 28.00
6P+3L 2.09 1.24 28.80
3L+2E 2.23 0.98 90.60

6P 2.48 1.53 27.00
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8. Segmentation

Additional constraints on their coordinates make a seg-
mentation of parametric curves �straight lines, ellipses, etc.�
more accurate than points. Since automatic segmentation of
parametric curves is not the research contribution of this
work, we do not produce specific numerical results that
would sidetrack the main theme of the paper. Instead we
refer the readers to the extensive literature already available
in the computer vision and image processing community,
where ellipse segmentation is a field in itself.33,43–45 The
parametric constraints can help segment the whole curve
with high accuracy, even when most of the curve is occluded
and only a small part is visible/segmented.43 This makes
pose estimation efficient. Moreover, the compact design of
the fiducial decreases the likelihood of occlusion. We have
developed and tested two methods of segmentation, both of
which exhibit similar performances.

For many clinical applications, semiautomatic segmenta-
tion suffices. The operator clicks at a few points in the image
that are close to the curves of interest. A minimum intensity
centroid search in the neighborhood fine-tunes this location.
Least square curve fitting is used to obtain the equation of
the straight line and ellipse. Since the point features are
known to be on the �extended� straight lines, their centroid
positions are projected on the straight lines to get the final
position. The semiautomatic MATLAB implementation takes
about 10–15 s to process each image, which is acceptable
for many applications.

Automatic segmentation of parametric curves is achieved
by using the Hough transform,33,44 which searches in the
parametric space. An edge image is created to search in the
parametric space. Straight lines are segmented using the
Hough transform, after which each line is fine-tuned by do-
ing a search for minimum intensity points in a small neigh-
borhood, followed by running a RANSAC-based least square
fitting43 on these points. The three strongest near-parallel
straight lines are chosen. The ellipse is composed of five
parameters, which renders the parametric search space huge.
A decoupled approach is used where the Hough transform is
used to estimate various possible axes of symmetry in the
image. Selected intersecting orthogonal axes are possible
candidates for an ellipse. A 2D Hough transform is used to
find the best ellipse for each intersection pair, which is then

FIG. 6. The robust pose estimation algorithm.
fine-tuned. The two strongest ellipses are chosen. Our imple-
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mentation is a normalized and robust variation of Ref. 45.
The points are segmented as end points of the lines. Alterna-
tively, a curve following technique46,47 can also be used,
though not implemented in our package.

III. RESULTS AND DISCUSSION

To measure sensitivity and robustness, the FTRAC fidu-
cial was tested using simulated data and data that was ob-
tained from real images of a precisely fabricated phantom.
Finally, experiments measuring 3D fluoroscopic reconstruc-
tion of objects �C-arm tracked using the FTRAC fiducial�
were conducted. The description and results for each experi-
ment is followed immediately by the discussion.

A. Simulation studies

As a customary first step in the evaluation of fluoroscopic
registration, simulations were conducted to evaluate the ac-
curacy and robustness of the pose estimation software. As-
suming an ideally calibrated fluoroscope, studies were con-
ducted on synthetic images to analyse the effects of various
governing parameters. MATLAB software was created to
model x-ray imaging. Given C-arm parameters and fiducial
pose, it generated a synthetic image and the exact location of
each feature in the image. Appropriate noise was added to
each imaging parameter, and its effect on pose recovery ac-
curacy was observed. The error was modeled using a uni-
form and random probability density function, i.e., a 1 mm
error means that a maximum error of magnitude 1 mm was
added, with a uniform probability distribution. Based on our
experience, the parameter values �for an average commercial
C arm� were chosen to be 0.25 mm segmentation error,
1000±2 mm focal length, 0.5 mm translation from the image
center for the origin, and 0.5 mm±1 �m as the pixel size.
The region of use was near the isocenter of the C arm, at
about a distance of two-thirds the focal length from the x-ray
source. With the above-mentioned error in the parameters,
individual parameters were changed to understand the sensi-
tivity of pose recovery. The simulations were carried out for
randomly selected poses in the workspace. The initial guess
was also chosen at random, far away from the actual pose.

1. Segmentation

Segmenting the projected fiducial from the x-ray images
is one of the most important sources of error. The last step of

TABLE II. Pose recovery error �simulation� as a func

Segmentation
error �mm�

Translation �mm�

X Y

0.00 0.18 0.19
0.50 0.19 0.18
1.00 0.19 0.19
2.00 0.22 0.22
3.00 0.26 0.26
our segmentation algorithm is to pick out multiple minimum
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intensity points and fit a least square curve. Since in the
synthetic data we know the precise position of each feature
in the image, we added a segmentation error to the simulated
point position. The erroneous points were then fit on a least
square curve. This shifted the recovered position of the fidu-
cial, which was compared to the known actual location.

Most of the translation error �Table II� was found to be
along the imaging direction, which is intuitive since small
changes in depth do not change the image significantly. The
translation error parallel to the image plane is low, which is
also intuitive since any small movement in that plane is mag-
nified in the image. This can also be derived mathematically
from Eq. �10�, where the depth derivative has a quadratic
term in the denominator, while the other derivatives are lin-
ear. Note that this could be an important source of error in
depth sensitive surgeries, but in most cases is acceptable,
especially when 3D information is projected into the image
for guidance. The rotation error, on the other hand, is similar
for all axes. The net translation and rotational error �based on
10 000 simulated poses� is displayed as a graph in Fig. 7�a�.
Most image processing algorithms achieve 1 pixel �0.4 mm�
segmentation accuracy for ellipses, which indicates a
0.8 mm translation and 0.1° rotation error. This appears to be
acceptable for most procedures and is similar to commercial
image guidance systems that use optical/EM trackers. More-
over, the graph suggests that the pose recovery error does not
grow exponentially with an increase in segmentation error. It
can be concluded that the FTRAC fiducial is fairly robust to
segmentation errors.

2. Focal length

The focal length, usually calibrated using an accurately
machined phantom, could vary as much as a few mm when
the C arm changes pose. Thus, an error in the focal length
estimate is very likely, which could possibly lead to an inac-
curate pose. Figure 7�b� �based on 20 000 simulated poses�
shows the pose recovery error as a function of focal length
calibration error. Orientation is always recovered with under
0.1° error, while translation error is nearly linear. Even a
5 mm error in focal length leads to under a 2 mm pose re-
covery error, with the largest component being in the imag-
ing direction. We conclude that the orientation of the FTRAC
fiducial is robust to focal length errors, while translation is a

f segmentation error.

Rotation �°�

Z X Y Z

0.75 0.02 0.02 0.01
0.79 0.05 0.06 0.04
0.79 0.09 0.11 0.07
0.98 0.18 0.22 0.14
1.24 0.26 0.32 0.21
tion o
little sensitive.
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3. Origin

The origin of the image, also calibrated using an accu-
rately machined phantom, would change location with vary-
ing C-arm poses. Any error in the origin estimate could lead
to a consistent shift in that particular direction. Figure 7�c�
�based on 20 000 simulated poses� shows the rotational and
translational sensitivity to the magnitude of error in origin
estimation. Both translation and orientation errors are linear,
though orientation is more robust. A 5 mm origin error leads
to under a 2 mm translation error and 0.2° orientation error,
with the largest component being parallel to the imaging di-
rection. We conclude that the FTRAC fiducial is robust to
origin estimation errors.

4. Pixel size

The pixel size along the x and y axes of the image does
not change with fluoroscope movements and stays constant
throughout the life of the fluoroscope. Hence a one-time cali-
bration can provide very accurate estimates that can be used
repeatedly, though any inaccuracies could have strong effects
in fluoroscopic reconstruction. An error as small as 10 �m
could lead to a 5 mm shift near the boundary of the image.
Figure 7�d� �based on 20 000 simulated poses� shows the
sensitivity to this parameter. Both translation and orientation
errors grow linearly, with most of the translation error being
parallel to the image and orientation error less than 0.5°. We
conclude that pose recovery orientation is robust to errors in

FIG. 7. Error in pose recovery as a function of �a� segmentation error; �b� fo
of use.
pixel size, while translation is sensitive but linear.
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5. Fiducial size

In the design of the FTRAC fiducial, the size of the fea-
tures can influence the accuracy of the algorithm to some
extent. A large fiducial tends to be more stable than a smaller
one, and thus the size should be chosen depending on the
work space constraints of the clinical application. We studied
the pose recovery sensitivity by scaling the size �diameter
and length�, but without altering the relative configuration.
Figure 7�e� �based on 8000 simulated poses� shows the trans-
lation and rotation errors as a function of size. It can be
concluded that the curve practically plateaus at 30 mm, with
a bigger fiducial exhibiting no improvement in accuracy.
Moreover, a fiducial of 1�1�2 cm size appears to be prac-
tical for most applications, with only a marginal drop in ac-
curacy.

6. Region of interest

The region of use of the fiducial also has a strong effect
on the accuracies obtained. A fiducial closer to the source has
a larger magnification, thus scaling any small errors and
making the algorithm converge better. This is evident also
from Eq. �10�, where the denominator in the Jacobian is the
depth of the fiducial. Figure 7�f� �based on 6000 simulated
poses� shows the pose recovery error as a function of the
distance from the image plane, expressed as a percentage of
the focal length. It can be concluded that orientation is inde-
pendent of fiducial placement, while the translation error

ength error; �c� origin error; �d� pixel size error; �e� fiducial size; �f� region
cal l
drops linearly in depth.



3194 Jain et al.: Fluoroscope Tracking „FTRAC… 3194
7. Run time and convergence

The robust pose recovery algorithm always converged
without failure. An unoptimized implementation using
MATLAB 6.5.13, on a 2.4 GHz Intel P4 with 512 MB of RAM
with a Windows 2000 OS, takes around 3.5 s to run �exclud-
ing image transfer and processing time�. This indicates that
an optimized C�� implementation would perform near real
time.

B. Pose recovery studies on phantom

A highly precise phantom was manufactured and real
x-ray images were taken using a fluoroscope �Philips BV
3000�. The system-supplied parameters were read from the
DICOM header, otherwise the fluoroscope was not explicitly
calibrated. Moreover, the images were not distortion cor-
rected �distortion �2 mm�. The fiducial was mounted on a
highly accurate 0.002° resolution rotational turntable �30000
Heavy Load Worm Gear Drive from Parker Automation, Ir-
win, Pennsylvania�. The fluoroscope remains stationary
while the fiducial moves in a known path, providing ground
truth.

A fiducial mount was designed such that it produced zero
translation and a known rotation when the turntable was ro-
tated. The design supported the two independent rotation
axes typical to C arms. Thus, given any starting pose, the
relative motion between the current pose and the starting
pose is known precisely from the turntable reading. The rela-
tive motion is also calculated using our algorithm �from
computed current pose and the computed starting pose�. The
difference between the computed relative motion and known
relative motion is the error. This setup was taken to the OR
and five series of tests were carried out with different fiducial
trajectories. The results are shown in Table III.

We recorded a mean accuracy of 0.56 mm for translation
�STD 0.33 mm� and 0.33° for rotation �STD 0.21°�, which
appears to be acceptable for most surgeries. It can be argued
that there may be a constant drift in the pose algorithm com-
putation, which would not be captured by this experiment.
All five trials have consistent results with the simulation ex-
periments, indicating that a constant error drift is highly un-
likely, which is further affirmed by the 3D reconstruction

TABLE III. Pose recovery results �phantom� using the

Trial
number

Number
of images

Translati

X Y

1 4 0.03 0.0
2 7 0.13 0.0
3 7 0.04 0.0
4 7 0.05 0.0
5 13 0.08 0.1

Mean 0.07 0.0

STD 0.05 0.0
studies below.
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C. Reconstruction studies on phantom

C-arm tracking is not an end in itself, but is a necessary
link toward 3D object reconstruction using multiple x-ray
images. The second set of phantom experiments involved
taking x-ray images of a stationary object from different
views, and reconstructing it in space. The FTRAC fiducial
was kept stationary, while the C arm was moved and mul-
tiple images �20° around the AP axis� were taken. The 3D
coordinates of the nine fiducial points were reconstructed
using two to five images �the FTRAC fiducial tracked the C
arm�. The location of these points was known with respect to
the fiducial by precise fabrication. The 3D reconstruction
accuracy is the difference between the computed coordinates
and the actual coordinates of the fiducial points. The points
were reconstructed with a mean accuracy of 0.53 mm �STD
0.16 mm�, which appears to be acceptable in most surgeries.
A significant portion of the pose error is in the imaging di-
rection, and hence in order to improve accuracy, the image
separation should be increased, being orthogonal in the ideal
case. Complete results are available in Table IV. Note that
this reconstruction accuracy will also be a function of image
warping and segmentation error. The FTRAC fiducial has
also been successfully used to reconstruct phantom brachy-
therapy implants,48 the performance of which is similar to
that reported here.

D. Comparison to conventional fiducials

In Sec. I, we provided the reasons why there is a need for
a small, yet accurate radio-opaque fiducial. In this section,
we offer quantitative results indicating progress over previ-
ous work. When analyzing the basic pose recovery algo-
rithm, simulation experiments from Sec. II show that though
using only point features is most stable, it is also the least
accurate �Table I�. As reviewed in Sec. I, all previously pro-
posed fiducials can be classified as bead-based fiducials �ex-
cept one3 that we shall compare with in the end�. Moreover,
even among these fiducials, increasing the number of beads
to more than 6 has little improvement in accuracy.19 For any
given fiducial, various pose estimation algorithms can be de-
signed, most of which fall into two categories—linear and
nonlinear. Linear algorithms evaluate least-squares solutions

AC fiducial phantom.

m� Rotation �°�

Z X Y Z

0.40 0.13 0.07 0.07
0.68 0.21 0.27 0.27
0.51 0.15 0.15 0.12
0.52 0.17 0.17 0.11
0.60 0.40 0.40 0.15
0.55 0.21 0.21 0.15

0.32 0.12 0.14 0.09
FTR

on �m

4
4
2
2
0
4

3

to the pose problem, for which they typically linearize the
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rotation matrices. Though quick and easy to implement, the
problem with this approach is that it neglects the rigid rota-
tion constraints, leading to lower accuracies. Extensive re-
sults are available in the literature,20,23 where the accuracy of
nonlinear methods is shown to be superior to linear methods.
Thus, it should be sufficient to compare the performance of
the FTRAC fiducial to a nonlinear pose estimation algorithm
using six beads. To improve robustness of bead-based fidu-
cials and to remove any biases that can arise due to a pref-
erential configuration of the six beads, we compared the
FTRAC fiducial to a nine-bead fiducial.

The predominant reason that the FTRAC fiducial offers
better accuracies to other fiducials is that it relies on ellipses
for evaluating the pose. Both for automatic and semiauto-
matic segmentation methods, achievable accuracies are de-
pendent on multiple parameters like feature constraints, im-
age resolution, x-ray wavelength, material used, choice of
algorithm, etc. Thus, in the same image, different features
provide different levels of accuracies. As reviewed in Sec. II,
ellipses intrinsically offer better segmentation than beads. To
quantitatively understand the improvement, we look at the
residual errors from segmented datasets. The accuracy of
each feature at the recovered pose is shown in Table V. It can
be noticed that closed parametric curves �ellipses� segment
with an overall accuracy of 0.13 mm, open parametric curves
are a little more error prone with an accuracy of 0.19 mm,
while points offer only 0.43 mm. The standard deviations

TABLE IV. Object reconstruction results using the FT

Number of images
used for each
reconstruction M

2
TRIAL 1 3

4
5
2

TRIAL 2 3
4
5

TABLE V. Residual distances for each feature from the five phantom trials.
Parametric curves provide greater accuracies.

Points Lines Ellipse

Residual
error
�mm�

0.44 0.14 0.15
0.49 0.14 0.18
0.43 0.28 0.11
0.38 0.21 0.10
0.42 0.19 0.11

MEAN 0.43 0.19 0.13
STD 0.04 0.05 0.03
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values are stable at under one-eighth of a pixel �50 �m�.
Thus, it seems that ellipse segmentation tends to be about
three times more accurate than points.

We conducted simulations for over 7000 poses and com-
pared the pose recovery results of a nine-bead fiducial to the
FTRAC fiducial, keeping this disparity in mind. The results
for translational and rotational pose recovery accuracies are
available in Figs. 8�a� and 8�b�, respectively. It can be noted
that even with high amounts of segmentation error, the
FTRAC fiducial exhibits only a marginal loss in accuracy.
On the other hand, the errors for bead-based fiducials climbs
steadily. This pattern is observed for both translation and
rotation, where the error quickly climbs to the 1 mm and 1°
mark for the bead-based fiducials, while it remains consis-
tently low for the FTRAC fiducial. This indicates that the
FTRAC fiducial is not only more accurate, but also more
robust when compared to conventional fiducials. We do not
explicitly compare the FTRAC fiducial to the helical
fiducial,3 since the errors reported there are well over
1.5 mm in translation and 2° in rotation, while we obtain
significantly superior results. Last, it should also be noted
that the results obtained in Sec. III indicate a significant im-
provement to the previously published results �Sec. I�.

IV. MOTIVATING APPLICATIONS

Though we have designed and tested the fiducial as a
stand-alone piece of technology, we also intend to use it in a
clinical application. The first use of this pose recovery tech-
nique will be in prostate brachytherapy, where C arms are
ubiquitous, with over 60% of the practitioners using it in the
operating room.49 Unfortunately, it is used only for qualita-
tive implant analysis and not for providing real-time intra-
operative dosimetry. Thus, the ultimate goal will be to
achieve registration between the seeds that are reconstructed
from fluoroscopy and the soft tissue anatomy that is recon-
structed from transrectal ultrasound �TRUS�, which would
allow us to make immediate provisions for any dose devia-
tions from the intended plan. Several leading groups have
published initial results favorably supporting C-arm fluoros-
copy for intraoperative dosimetric analysis.50–52 To achieve

fiducial phantom.

STD MIN MAX

0.17 0.20 1.18
0.14 0.19 0.92
0.14 0.19 0.75
0.14 0.23 0.67
0.25 0.27 1.70

0.16 0.29 1.13
0.15 0.30 0.80
0.14 0.33 0.73
RAC

EAN

0.55
0.50
0.48
0.47
0.66

0.55
0.53
0.52
intraoperative dosimetry in prostate brachytherapy, we need
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to address the issues of �a� C-arm distortion correction and
calibration; �b� C-arm pose tracking; �c� seed matching and
reconstruction; and �d� registration of C-arm to TRUS im-
ages. The FTRAC fiducial is capable of addressing the issues
of pose tracking and registration.

In a quick survey of registration, thin metal wire53 inside
a Foley catheter was used to visualize the prostatic urethra
fluoroscopically in anterior–posterior and lateral projections.
Recently, gold marker seeds54 were implanted into the pros-
tate and the relative positions of the needles and marker
seeds were observed in fluoroscopy. Inserted implant
needles52 were used as fiducials for the registration of the
fluoroscopy and ultrasound spaces. Unfortunately, implanted
markers of any sort are susceptible to motion, and thus are
not reliable. Alternately, radio-opaque spherical beads have
been rigidly attached to the TRUS probe,19 not only register-
ing the TRUS to the x-ray images, but also addressing track-
ing. This process appears to require a permanent alteration to
the probe, which for some practitioners might not be desir-
able.

Since in commercial brachytherapy systems the template
is already registered to TRUS, the FTRAC fiducial will be
attached to the implant template with a precision-machined
mechanical connector in a known position. The spatial rela-
tionship between the FTRAC and TRUS is explained in Fig.
9. Let PF be a point reconstructed in FTRAC space, PU be
the same point in ultrasound space, FFT be the transformation
between FTRAC and template, and FTU be the transforma-
tion between template and ultrasound. Then the relationship
between PU and PF can be expressed as PU=FTU FFT PF.
Let us examine how accurate PU is expected to be the accu-
racy of FFT is defined by the accuracy of CNC machining
and is in the neighborhood of 0.25 mm. The accuracy of PF

was found to be about 0.5 mm in our experiments. The ac-
curacy of FTU is specific to the FDA-approved brachytherapy
system �CMS Interplant� that we will be using, and it is
about 1.0 mm. Thus, the overall accuracy of the whole sys-
tem is expected to be under 2 mm and can be further reduced
by an improvement in the template-to-TRUS registration
method. Experiments to evaluate the accuracy of the com-
plete system are currently underway.

The fiducial is of general use, but has been optimized for
prostate brachytherapy. The ellipses �and other features� are

inclined at an angle of 30° to the vertical. Even when the

Medical Physics, Vol. 32, No. 10, October 2005
fiducial is kept close to the prostate and at varying heights, a
30° plane �to the vertical� divides the fiducial from the pros-
tate �which contains the seeds�. If the C-arm images are
taken in any position inside the 30° cone around the AP axis,
this design reduces the likelihood of overlap between the
seed projections and the fiducial. As we have mentioned ear-
lier, we will mount the FTRAC fiducial over the abdomen on
the TRUS stepper, in a known calibrated pose relative to the
template with the use of a precision-machined extender �Fig.
10�a��. The distance between the FTRAC fiducial and the
prostate will be about 15 cm, in which range the pose recov-
ery and object reconstruction stabilities are adequate. The
fallback plan,55 as shown in Fig. 10�b�, is to place the fidu-
cial on a rectal sheath that supports the prostate, while the
TRUS probe can move unhindered inside the sheath. The
technical difficulty in this case was a robust coupling be-
tween the TRUS probe and the sheath, at acceptable loss in
image quality. However, an increase in insertion diameter is
of concern. A third alternative is to put the patient on a foam
board incorporating one or several FTRAC fiducials in
known relative offset with respect to the TRUS stepper.

Apart from brachytherapy, another promising application
is fluoroguided robot-assisted surgery, as done in the
literature.3 If mounted on the robot, the FTRAC fiducial can
register the robot to the C-arm space, achieving virtual fluo-
roscopy. In general, surgical tool tracking under x-ray fluo-

FIG. 8. A comparison of pose recovery
accuracies for a nine-bead conven-
tional fiducial compared to the
FTRAC fiducial. Errors in �a� transla-
tion; �b� rotation. The FTRAC fiducial
performs significantly superior.
FIG. 9. Frame transformations between the FTRAC and TRUS.
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roscopy imaging can be achieved if the C arm is kept sta-
tionary, while the FTRAC fiducial is rigidly mounted on a
surgical tool. Moreover, segmentation of the fiducial image
and pose recovery have an inherent duality �i.e., knowing
one directly relates to the other�, which can further boost
accuracy. The final pose can be used to improve segmenta-
tion, which, in turn, can enhance the pose. Iteratively doing
this will not only improve accuracy, but also remove the
need for an accurate segmentation. Alternately, an algorithm
that does not optimize on the geometric error of the fiducial
features, but optimizes directly on the intensity information,
can be used. Both these techniques will eliminate the need
for segmentation, while still achieving accurate pose recov-
ery. The FTRAC fiducial can potentially also be used for
both preoperative and intraoperative C-arm calibration. Ad-
ditionally, the FTRAC fiducial can be instrumental in regis-
tering x-ray images to other imaging modalities. Thus, the
FTRAC fiducial can facilitate a plurality of fluoroscopically
guided procedures.

V. CONCLUSION AND OPEN QUESTIONS

A fiducial for robust and accurate C-arm tracking was
designed, prototyped, computationally evaluated, and experi-
mentally validated. The primary contribution of this work
was the use of parametric curves �ellipses and straight lines�,
in addition to spherical beads that have been used conven-
tionally. Point-based algorithms, though easy to implement,
are sensitive to errors. On the other hand, parametric curves
�a� segment accurately; �b� constrain pose recovery better;
and �c� move pose recovery outside the framework of purely
point-based methods. The proposed fiducial also addresses
the issue of registration to other imaging modalities by pre-
cise placement.

Without distortion correction and extensive calibration,
the FTRAC fiducial can track a C arm with a mean accuracy
of 0.56 mm in translation �STD 0.33 mm� and 0.33° in rota-
tion �STD 0.21°� and can reconstruct 3D coordinates to a
mean accuracy of 0.53 mm �STD 0.16 mm�. It not only
promises to offer superior accuracies when compared to con-
ventional fiducials, but also is significantly smaller in size
�3�3�5 cm�. The simulations suggest that the size of the
FTRAC fiducial can be further reduced to 1�1�2 cm,
maintaining a similar level of accuracy.

One of the open questions in quantitative fluoroscopy is

FIG. 10. The FTRAC fiducial mounted on �a� the template; �b� a hollow
cylindrical sheath.
the importance of distortion correction and C-arm calibra-
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tion. Generally speaking, distortion is widely prevalent and
necessitates a correction procedure. This assures accurate
tracking and reconstruction. Since properties vary from one
machine to another, the distortion on some fluoroscopes
might be small, while on others it might be large. Moreover,
some applications might be more robust to distortion effects
than others. Depending on the application and the amount of
distortion, researchers might choose to �a� correct for a
unique distortion at every pose, �b� use a constant correction
for all poses, or �c� completely neglect distortion. This deci-
sion has to be made on a case by case basis. The results in
this paper are on uncorrected images. The reason for robust-
ness of our results to C-arm distortion can be attributed to the
low amounts of distortion in the fluoroscope �average
�2 mm� and to the small physical size of the fiducial, which
covers only a small area in the image. Since distortion cor-
rection is not the focus of this paper, we do not analyze its
effects on reconstruction. The results and analysis are avail-
able elsewhere.48

A similar issue arises for a calibration of the imaging
parameters. Though it is believed that accurate calibration is
a necessary prerequisite for quantitative fluoroscopy, our re-
sults indicate that it might not always be the case. Depending
on the C arm used and the variation in the imaging param-
eters, inaccurate imaging parameters might still provide an
accurate reconstruction of 3D information. These ideas can
have desirable repercussions in a variety of clinical proce-
dures, meriting further research. Though the FTRAC fiducial
directly does not address these issues, it has provided the
necessary intuition. We hope that these ideas, in collabora-
tion with the FTRAC fiducial, will boost the clinical rel-
evance and applicability of quantitative fluoroscopy on ordi-
nary C arms.
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